Synthesis and structural characterization and DFT calculations of the organic salt crystal obtaining 9-aminoacridine and picric acid: 9-Aminoacridinium picrate

Author:

Aydin Fatma1ORCID,Arslan Nahide Burcu2ORCID

Affiliation:

1. Department of Chemistry, Sciences Faculty, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey

2. Department of Computer Education and Instructional Technology, Faculty of Education, Giresun University, 28200, Giresun, Turkey

Abstract

Organic salt, 9-aminoacridinium picrate (9-AAcPc), containing equimolar quantities of 9-aminoacridine and picric acid was obtained and a single crystal was grown by the slow evaporation method in the mixture of methanol: tetrahydrofuran solvent (1: 1, v: v). The molecular structure of the prepared compound was confirmed by FT-IR, 1H NMR, and 13C NMR spectroscopic methods, as well as single crystal X-ray diffraction analysis. The X-ray diffraction analysis of the crystal structure of the title compound showed the presence of the triclinic space group P-1 with no. 2, a = 8.2811(7) Å, b = 10.1003(9) Å, c = 13.4484(13) Å, α = 83.521(3)°, β = 83.330(3)°, γ = 66.595(3)°, V = 1022.56(16) Å3, Z = 2, μ(MoKα) = 0.108 mm-1, Dcalc = 1.375 g/cm3, 56338 reflections measured (5.89° ≤ 2Θ ≤ 56.704°), 5097 unique (Rint = 0.0400, Rsigma = 0.0210) which were used in all calculations. The final R1 was 0.0552 (I > 2σ(I)) and wR2 was 0.1757 (all data). The molecular geometry was also optimized using density functional theory. The frontier molecular orbitals were calculated, and we discussed the probability that the proton transfers from the phenolic OH group of picric acid to different nitrogen units. The calculated electronic structure properties of the title molecule, such as the HOMO and LUMO analysis, and different molecular electrostatic potential maps, were obtained by using the density functional theory method, and the calculated structure was compared with the experimental structure. The thermal stability of the crystal was also analyzed using the TGA/DTG technique.

Publisher

European Journal of Chemistry

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3