Electronic band structure of Bi5O7NO3 and its methyl orange removal mechanism

Author:

Abdullah Eshraq Ahmed1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Education, Taiz University, Taiz, 009674, Yemen

Abstract

A detailed study of the electronic band structures and partial density of states of Bi5O7NO3 with different exchange correlation functionals was performed using the generalized gradient approximation. Bi5O7NO3 has two direct energy gap transitions of 2.84 and 3.66 eV at the experimental lattice parameters, revealing a semiconductor characteristic of a crystal. Molecular Mechanics; however, tends to underestimate the band-gap energies with indirect characters. This deviation is due to the slight decrease in the cell edges and the significant increase in the β angle during the optimization process. The mechanism of removal of methyl orange and its derivatives by the Bi5O7NO3 unit cell, which has the same experimental UV-Vis band gap, was later investigated through a DMol3 module. To do that, frontier molecular orbitals, global reactivity parameters, and electrostatic potential surface maps were evaluated. The high values of the electrophilicity indexes hint that the dyes are more reactive and can work as good electrophile species. A molecular packing of dye molecules and the ionic natural of Bi5O7NO3 generate a synergistic effect between π-π stacking, anion-π stacking, cation-π stacking and electrostatic interactions, which are thought to be the driven forces during dye removal.

Publisher

European Journal of Chemistry

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3