Halide bridged organophosphorus complexes of HgX2 (X: I, Br and Cl): Synthesis, structure and theoretical studies

Author:

Mondal Jahangir1ORCID,Manna Amit Kumar1ORCID,Patra Goutam Kumar1ORCID

Affiliation:

1. Department of Chemistry, School of Physical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India

Abstract

Three organophosphorus mercury (II) coordination compounds [Hg2(µ-X)2X2(PPh3)2] {X: I (1), Br (2), and Cl (3)} have been synthesized by the reaction of mercury (II) halides with triphenylphosphine. The prepared complexes were characterized by spectroscopic techniques as well as by elemental analysis. The crystal structure of [Hg2(µ-I)2I2(PPh3)2] (1) was obtained by single-crystal X-ray diffraction study. Crystal data for [Hg2(µ-I)2I2(PPh3)2], C36H30Hg2I4P2: Monoclinic, space group P21/c (no. 14), a = 19.2115(13) Å, b = 11.1291(8) Å, c = 19.0599(14) Å, β = 90.461(2)°, V = 4075.0(5) Å3, Z = 4, T = 293.15 K, μ (MoKα) = 10.657 mm-1, Dcalc = 2.336 g/cm3, 46095 reflections measured (4.23° ≤ 2Θ ≤ 49.994°), 7182 unique (Rint = 0.0563, Rsigma = 0.0365) which were used in all calculations. The final R1 was 0.0322 (I > 2σ(I)) and wR2 was 0.0780 (all data). The single crystal analysis of [Hg2(µ-I)2I2(PPh3)2] complex revealed that it has dimeric structure with bridged halides. [Hg2(µ-I)2I2(PPh3)2] complex has also a supramolecular arrangement through I···H-C interactions. The crystal packing and supramolecular features of these coordination compounds have also been studied using geometrical analysis, Hirshfeld surface analysis and DFT studies. Hirshfeld surface analysis indicated that H···H (49.3%), C···H (10.6%), and I···H (12.8%) interactions are the primary contributors to the intermolecular stabilization in the crystal. The equilibrium geometries of the studied complexes are investigated theoretically at the B3LYP/LANL2DZ level of theory. The calculated energy gap between HOMO-LUMO orbitals for complexes 1, 2, and 3 are in the trend of complex 3 > 2 > 1.

Publisher

European Journal of Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3