Newer chalcone scaffolds with reactive functional groups: Process, spectral and single crystal XRD studies

Author:

Borane Niteen1ORCID,Deshmukh Amar Ghanshyam1ORCID,Oza Nidhi Harnesh1ORCID,Boddula Rajamouli1ORCID,Patel Paresh Narayan1ORCID

Affiliation:

1. Laboratory of Bio-Organic Chemistry, Tarsadia Institute of Chemical Science, Uka Tarsadia University, Bardoli - 394350, Gujarat, India

Abstract

Chalcones are versatile scaffolds for the synthesis of various heterocyclic systems with commercial utility. This work describes the synthesis of five novel chalcone derivatives. Syntheses were performed by a simple one-pot, straightforward Claisen-Schmidt condensation catalyzed with pyrrolidine and KOH. The chalcones were prepared by condensation of 4-formylbenzonitrile with different aromatic ketones at room temperature. The structures of all compounds have been investigated by FT-IR, NMR, and HR-MS spectroscopy. In addition, one chalcone structure was characterized by single-crystal XRD study. Crystal data for C21H15NO2 (Ch2): monoclinic, space group P21/c (no. 14), a = 6.5694(3) Å, b = 33.2697(15) Å, c = 7.4516(4) Å, β = 97.563(2)°, V = 1614.47(14) Å3, Z = 4, T = 293(2) K, μ(MoKα) = 0.083 mm-1, Dcalc = 1.289 g/cm3, 16000 reflections measured (4.898° ≤ 2Θ ≤ 49.99°), 2822 unique (Rint = 0.0249, Rsigma = 0.0196) which were used in all calculations. The final R1 was 0.0484 (I > 2σ(I)) and wR2 was 0.1257 (all data). The absorption maxima of all novel products were evaluated by UV-visible spectroscopy. These well-established structures of all newly prepared chalcone scaffolds with reactive functional groups (i.e. nitrile and 2-propenone) can be exploited as a crucial intermediate in the synthesis of new heterocyclic scaffolds with fluorescence and other applications.

Publisher

European Journal of Chemistry

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3