Author:
Shantta Kalifa,Basir Otman
Abstract
<p class="Abstract">Even with the enormous progress in medical technology, brain tumor detection is still an extremely tedious and complex task for the physicians. The early and accurate detection of brain tumors enables effective and efficient therapy and thus can result in increased survival rates. Automatic detection and classification of brain tumors have the potential to achieve efficiency and a higher degree of predictable accuracy. However, it is well established that the accuracy performance of automatic detection and classification techniques varies from technique to technique, and tends to be image modality dependent. This paper reviews the state-of-the-art detection techniques and highlights their pros and cons.</p>
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Investigating Brain Tumor Detection and Classification through various Deep Learning Approaches;2024 Sixth International Conference on Computational Intelligence and Communication Technologies (CCICT);2024-04-19
2. Brain Tissue Segmentation Using Transfer Learning;Proceedings of Third International Conference on Sustainable Expert Systems;2023