Oxidized LDL Regulates Endothelin-1 and Oxidative Stress in Vascular Endothelial Cells: Role of Extracellular Regulated Kinase1/2 (ERK1/2)

Author:

Xu Haishan,Duan Jinhong,Tao Jun,Wang Wen,Wu Yunqing,Dai Shunling,Ren Jun

Abstract

Article Oxidized LDL Regulates Endothelin-1 and Oxidative Stress in Vascular Endothelial Cells: Role of Extracellular Regulated Kinase1/2 (ERK1/2) Haishan Xu 1,#, Jinhong Duan 1,#, Jun Tao 2, Wen Wang 3, Yunqing Wu 1,^, Shunling Dai 1,*, and Jun Ren 4,5, 1 Faculty of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005 China 2 Department of Cardiovascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000 China 3 Department of Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China 4 Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China 5 National Clinical Research Center for Interventional Medicine, Shanghai 200032, China # These two authors contributed equally to this work ^ Deceased * Correspondence: daishunling@aliyun.com (Shunling Dai); corresponding author:jren_aldh2@outlook.com (Jun Ren)     Abstract: It is perceived that oxidized low density lipoprotein (oxLDL) perturbs endothelial function and fosters endothelin-1 (ET-1) secretion although the underlying mechanism remains elusive. This study was designed to decipher potential mechanisms underscoring oxLDL-evoked regulation of ET-1 and signaling pathways involved in endothelial cells. ET-1 mRNA expression, secretion and promoter function were determined using RT-PCR, enzyme immunometric and luciferase assays, respectively. GO and GSEA bioinformatics analyses depicted differentially expressed genes (DEGs) mainly associated with cell proliferation, cell division, cellular structure, energy supply, and apoptosis in oxLDL-challenged endothelial cells. Incubation of oxLDL overtly increased ROS production, apoptosis, mRNA level, secretion and promoter activity of ET-1 in human umbilical vein endothelial cells (HUVECs), the effects were mitigated by N-Acetyl Cysteine (NAC). Moreover, oxLDL challenge evoked phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) in HUVECs, the effect was reversed by NAC and MEK inhibitor PD98059. NAC and PD98059 nullified oxLDL- induced rises in mRNA expression, secretion and promoter activity of ET-1. Truncation of 5’-flanking sequence of ET-1 (–566 bpLuc to –250 bpLuc) displayed elevated luciferase activity with 24-h oxLDL incubation. Fusion plasmid from –233 and –185 bp Luc drastically dampened luciferase activity in basal and oxLDL-challenged HUVECs. Transfection of reporter construct –250 bp Luc with a 2 bp mutation at AP-1 locus, removed basal and oxLDL- evoked rises in ET-1 promoter activity. Collectively, our findings support that oxLDL evoked activation of ERK1/2 signaling likely through ROS production, en route to upregulation of endothelial transcriptional factor AP-1, resulting in expression and secretion of ET-1.

Publisher

Australia Academic Press Pty Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3