The Role of Macrophages in Orthodontic Tooth Movement: A Review

Author:

Zhao Weiye,Xu Hao,Zhang Hanwen,Yan Bin

Abstract

Review The Role of Macrophages in Orthodontic Tooth Movement: A Review Weiye Zhao 1,2,3, Hao Xu 1,2,3, Hanwen Zhang 4,5,*, and Bin Yan 1,2,3,* 1 Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China 2 Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210008, China 3 Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210008, China 4 School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210008, China 5 Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 210008, China * Correspondence: hanwenzhang@njmu.edu.cn(Hanwen Zhang); byan@njmu.edu.cn (Bin Yan);     Received: 24 April 2023 Accepted: 12 June 2023   Abstract: Orthodontic tooth movement (OTM) is facilitated by the induction of mechanical force, which triggers a sterile inflammatory response in the periodontal tissues. This response, in turn, coordinates the processes of bone resorption and formation. Through an extensive review of the existing literature on the biology of OTM, it becomes evident that macrophages play a pivotal role in all stages of the process. Furthermore, researchers have identified various emerging drugs and biological agents that target the behavior of macrophages, aiming to regulate and control the rate of OTM. To date, most studies have primarily focused on investigating the effects of anti-inflammatory drugs on the rate of OTM and elucidating their specific mechanisms. However, there is a notable absence of reports specifically addressing drugs capable of accelerating tooth movement. Nonetheless, in other fields, such as the promotion of fracture healing, techniques for modulating macrophage function using bio-scaffolds or sustained-release formulations loaded with cytokines or drugs have demonstrated significant advancements. Thus, these techniques hold promise as important avenues for future research and development, exploring the potential of macrophages in regulating the rate of OTM.

Publisher

Australia Academic Press Pty Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3