Optical Study on Soot Formation of Ethanol/ hydrogenated Catalytic Biodiesel/octanol Blends

Author:

Zhou Shufa,Zhong Wenjun,Pachiannan Tamilselvan,Liu Qing,Yan Feibin,Chen Jiafeng,He Zhixia,Wang Qian

Abstract

Article Optical Study on Soot Formation of Ethanol/hydrogenated Catalytic Biodiesel/octanol Blends Shufa Zhou 1, Wenjun Zhong 1,*, Tamilselvan Pachiannan 2, Qing Liu 1, Feibin Yan 1, Jiafeng Chen 1, Zhixia He 2, and Qian Wang 1 1 School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China 2 Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China * Correspondence: wj_zhong@ujs.edu.cn     Received: 5 September 2023 Accepted: 2 November 2023 Published: 28 November 2023   Abstract: The incorporation of alcohol-based fuel is pivotal in attenuating soot emissions arising from highly reactive hydrocarbon-based fuels. To elucidate the mechanism through which ethanol curtails soot formation in hydrogenated biodiesel, an experimental inquiry was undertaken by employing the high-frequency background light extinction technique within a constant volume combustion chamber system. The primary objective of this study was to scrutinize the impact of blending ethanol with highly reactive fuel on soot generation. Empirical evidence shows that ethanol, owing to its substantial oxygen content, has the potential to facilitate soot oxidation. Incorporating ethanol effectively diminishes soot formation in aspects of quantity, rate, and area. The initial time and location of soot formation increase as the ethanol blending ratio increases. The influence of latent heat of evaporation and Cetane Number on the initial time and location of soot formation varies with distinct environmental temperatures. At 750 K, the latent heat of evaporation exhibits a more pronounced influence in contrast to the Cetane Number. As the temperature rises, the Cetane Number gradually becomes more influential. At a temperature of 825 K and an oxygen content of 21%, the E30H60O10 blend shows an increase of 21.2% and 21.4% in the initial time and location of soot formation, respectively, compared to the E15H75O10 mix. Furthermore, there is a reduction of 75.8% in the total soot mass.

Publisher

Australia Academic Press Pty Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3