Macroscopic and Microscopic Characteristics of a GDI Spray Under Various Thermodynamic Conditions

Author:

Li Jian,Li Lulu,Xiao Rujie,Liang Yuanfei,Qiu Shuyi,Li Xuesong

Abstract

Article Macroscopic and Microscopic Characteristics of a GDI Spray Under Various Thermodynamic Conditions Jian Li 1, Lulu Li 1, Rujie Xiao 1, Yuanfei Liang 1, Shuyi Qiu 2, and Xuesong Li 2,* 1 SAIC GM Wuling Automobile Co., Ltd., 18 Hexi Rd, Liunan District, Liuzhou 545001, China 2 School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China * Correspondence: xuesonl@sjtu.edu.cn     Received: 12 June 2023 Accepted: 9 August 2023 Published: 28 August 2023   Abstract: Gasoline direct injection (GDI) is the most common and advanced fuel supply strategy for gasoline engines. The fuel atomization quality and fuel/air mix degree determine the subsequent combustion efficiency and emissions. However, the engine works in complex conditions which have numerous thermodynamic boundary conditions, and the characteristics of fuel atomization also change accordingly. It is necessary to clarify the influence of various thermodynamic conditions on the GDI spray. In this work, three different types of optics diagnostic methods were utilized to capture the macroscopic and microscopic characteristics of a commercial GDI injector spray under various thermodynamic boundary conditions. Specifically, Mie-scattering photography was employed to get the macroscopic parameters; planar Mie-scattering photography was utilized to get the spray pattern; phase Doppler interferometry (PDI) was used to get the microscopic characteristic, i.e., the droplet size distributions. It is found from this study that higher injection pressure, lower ambient pressure, and lower ambient temperature would lead to longer penetration and larger plume width. Lower ambient pressure and higher ambient temperature would cause a smaller spray pattern. Higher injection pressure, lower ambient pressure, and higher ambient temperature would result in smaller droplet sizes.

Publisher

Australia Academic Press Pty Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3