A Novel Multi-Objective Optimization Approach with Flexible Operation Planning Strategy for Truck Scheduling

Author:

Wang Yiming,Liu Weibo,Wang Chuang,Fadzil Futra,Lauria Stanislao,Liu Xiaohui

Abstract

Article A Novel Multi-Objective Optimization Approach with Flexible Operation Planning Strategy for Truck Scheduling Yiming Wang , Weibo Liu *, Chuang Wang , Futra Fadzil , Stanislao Lauria , and Xiaohui Liu Department of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom * Correspondence: Weibo.Liu2@brunel.ac.uk     Received: 13 April 2023 Accepted: 25 April 2023 Published: 23 June 2023   Abstract: The transportation system plays an important role in the open-pit mine. As an effective solution, smart scheduling has been widely investigated to manage transportation operations and increase transportation capabilities. Some existing truck scheduling methods tend to treat the critical parameter (i.e., the moving speed of the truck) as a constant, which is impractical in real-world industrial scenarios. In this paper, a multi-objective optimization (MOO) algorithm is proposed for truck scheduling by considering three objectives, i.e., minimizing the queuing time, maximizing the productivity, and minimizing the financial cost. Specifically, the proposed algorithm is employed to search continuously in the solution space, where the truck moving speed and truck payload are chosen as the operational variables. Moreover, a smart scheduling application integrating the proposed MOO algorithm is developed to assist the user in selecting a suitable scheduling plan. Experimental results demonstrate that our proposed MOO approach is effective in tackling the truck scheduling problem, which could satisfy a wide range of transportation conditions and provide managers with flexible scheduling options.

Publisher

Australia Academic Press Pty Ltd

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3