OPERATIONAL IRRIGATION MANAGEMENT: MODERN CHALLENGES, REALITIES AND VISIONS

Author:

Zhovtonog O. I.ORCID,Polishchuk V. V.ORCID,Filipenko L. A.ORCID,Saliuk A. F.ORCID,Butenko Ya. O.ORCID,Hoffmann M. W.ORCID

Abstract

Introduction. The current challenges in water and agriculture management in Ukraine wield major influence on the development of reclamation science and practice. These challenges and the realities of irrigated farming require a revision of traditional decision-making methods and criteria to ensure resource-efficient irrigation management. Analytical and experimental studies were conducted to evaluate existing irrigation practices, develop a vision for its development over the next 20-30 years, and evaluate the prospects for the use of certain innovative products that can be implemented for irrigation management under existing economic conditions and in the future. The purpose of the research was to improve the methods of operational irrigation management and support the adoption of appropriate strategic decisions to achieve resource efficiency in irrigated agriculture. The following tasks were solved: to investigate the temporal and spatial variability of the natural and economic conditions of irrigation use; to determine the basic directions of models and algorithms improvement for operational irrigation planning taking into account the spatial and temporal variability of natural and economic conditions of real production; to evaluate perspective directions of development of irrigation planning methods to ensure resource efficiency of management in the current agricultural practice. Methods and methodologies. The research was conducted during 2012-2019 at the farms of Kherson and Zaporizhzhya regions. Testing and pilot implementation of the operational irrigation planning information system “GIS Polyv” has been carried out. The studies were carried out on 306 fields, the total area of which was 9266.09 ha, the main crops were soybean, sunflower, winter wheat, alfalfa and winter rape. Research methods included on-site observations, modelling, remote sensing, and method of system analysis. Results and discussion. The role of on-site and space agro-monitoring for the correction of bioclimatic coefficients of crop water consumption taking into account the space-time variability of the actual biomass has been substantiated and demonstrated. For the adaptation of irrigation management to the conditions of air drought, it is proposed to use an additional criterion for making decisions on crop cooling, which is determined by the maximally permissible temperature duration at the vegetation surface above the physiologically acceptable level. It is established that under conditions of air drought, in addition to slowing the growth of biomass, physiological processes occur in the leaves and reproductive organs of plants, due to the increase in the temperature of the vegetation surface. According to studies of energy transfer processes in crops during periods of atmospheric drought, an increase in the use of a share of thermal energy for turbulent exchange has been found compared to the volumes of energy that is evaporated. The vision of the future development of methods of operational irrigation planning based on modern agricultural information platforms has been presented.  It will allow to choose a method of operational irrigation management, based on the capabilities of each farm economy and to provide "on-line" consulting for water user organizations or farm personnel.

Publisher

Publishing House of National Academy Agrarian Sciences of Ukraine

Reference21 articles.

1. Alpatev, S.M., & Ostapchyk, V.P.(1974). Opyt yssledovanyia byolohycheskoho metoda rascheta ysparenyia pry formyrovanyy ekspluatatsyonnoho rezhyma oroshenyia [The experience of the biological method for calculating evaporation in the formation of the irrigation operational regime]. Byolohycheskye osnovy oroshaemoho zemledelyia. Moskva: Nauka, 127-135.[in Russian].

2. Ostapchyk, V.P., Kostromyn, V.A., & Koval, A.M. (1989). Ynformatsyonno-sovetuiushchaia systema upravlenyia oroshenyem [Information Advisory Irrigation Management System]. Kiev: Urozhai. [in Ukrainian].

3. Zhovtonoh, O.I. (2001). Pryntsypy ta metody planuvannia adaptyvnoho zroshennia [Adaptive irrigation planning principles and methods]. Extended abstract of Doctor’s thesis. Kyiv: IWPiM. [in Ukrainian].

4. Romashchenko, M. I., Drachynska, E. S., & Shevchenko, A. M. (2005). Informatsiine zabezpechennia zroshuvanoho zemlerobstva. Kontseptsiia, struktura, metodolohiia orhanizatsii [Information support for irrigated agriculture. The concept, structure, methodology of the organization]. Kyiv: Ahrarna nauka. [in Ukrainian].

5. Kovalchuk, P. I., Mykhalska, T. O., Kovalchuk, V. P., & Pysarenko, P. V. (1999). Ekoloho-ekonomichne obhruntuvannia polyvnykh ta zroshuvalnykh norm na osnovi informatsiinykh tekhnolohii [Ecological and economic substantiation of irrigation norms on the basis of information technologies]. Melioratsiia i vodne hospodarstvo, 86, 21-27. [in Ukrainian].

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model Complex of Information System “Gis Poliv” and Remote Sensing Data use to Adjust Model Parameters;2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT);2021-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3