Rational Design of Organo-Ruthenium Anticancer Compounds

Author:

Gossens Christian,Tavernelli Ivano,Rothlisberger Ursula

Abstract

Organometallic ruthenium(II)-arene complexes are currently attracting increasing interest as anticancer compounds with the potential to overcome drawbacks of traditional drugs like cisplatin with respect to resistance, selectivity, and toxicity. Rational design of new potential pharmaceutical compounds requires a detailed understanding of structure–property relationships at an atomic level. We performed in vacuo density functional theory(DFT) calculations, classical MD, and mixed QM/MM Car-Parrinello MD explicit solvent simulations to rationalize the binding mode of two series of anticancer ruthenium(II) arene complexes to double-stranded DNA (dsDNA).Binding energies between the metal centers and the surrounding ligands as well as proton affinities were calculated using DFT. Our results support a pH-dependent mechanism for the activity of the RAPTA [Ru(?6-arene)X2(pta)] (pta = 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane) compounds. Adducts of the bifunctional RAPTA and themonofunctional [Ru(?6-p-cymene)Xen]+ series of compounds with the DNA sequence d(CCTCTG*G*TCTCC)/d(GGAGACCAGAGG), where G* are guanosine bases that bind to the ruthenium compounds through their N(7) atom, have been investigated. The resulting binding sites were characterized in QM/MM molecular dynamics simulations showing that DNA can easily adapt to accommodate the ruthenium compounds.

Publisher

Swiss Chemical Society

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3