Author:
Stein Daniel,Geier Jens,Schönberg Hartmut,Grützmacher Hansjörg
Abstract
The reaction of phenyldichlorophosphane, PhPCl2, a commercially important precursor for organophosphorus compounds, with lithium and sodium as reducing metals was re-investigated with the aim to well-characterize the resulting oligophosphandiides, [M2(PnPhn)(solv)x]
(M = Li, Na). Experimental conditions for the optimal formation of these compounds were found for both series with M = Li and M = Na and several of these were crystallized and characterized by X-ray diffraction studies. As a result, we find that sodium strongly prefers ion triple structures
[M2(PnPhn)(solv)x] over solvent-separated ion pairs, [M(solv)m]+[MPnPhn(solv)n]?, which have a higher tendency to form with M = Li. Also, while [Na2(P4Ph4)(solv)x]
retains its structure in thf solution, [Li2(P4Ph4)(solv)x] partially dissociates into the radical anion (Ph2P2).? which is detected by EPR spectroscopy. The knowledge about the structures and the behavior of
the alkali metal diphosphandiides allows us to propose a reaction mechanism for their formation.
Subject
General Medicine,General Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献