An intelligent system for constructing metro train driver working schedules

Author:

Markevich A. V.1,Sidorenko V. G.2

Affiliation:

1. TERRALINK DEVELOPMENT

2. RUT(MIIT)

Abstract

Aim. The paper aims to tests and analyse the results of application of an intelligent system for constructing metro train driver working schedules that is intended for automatically improving the efficiency of utilisation of the working time of metro train drivers. In this case, depending on the task at hand and the chosen criterion, efficiency is understood as a reduction of the number of drivers involved in the implementation of the specified standard train schedule, improved uniformity of alternation of driver work and rest periods, as well as reduction of the duration of down time within work shifts.Methods. The study presented in the paper uses the graph theory, recursive and heuristic algorithms.Results. The authors have developed recursive algorithms for preparing work schedules for main metro train drivers and substitute drivers that operate during main drivers’ lunch breaks. The developed algorithms are used in the intelligent system for metro train driver work schedule planning. The algorithm for generating main driver work schedule includes driver allocation to a number of work lines preliminarily defined based on the rolling stock operation schedule for the purpose of ensuring traffic according to the planned metro train schedule. The algorithm for generating substitute driver work schedule involves substitute driver work time planning based on the possibility of arranging lunch breaks for main drivers.Conclusion. The paper presents the results of a trial of the developed intelligent system for train driver work planning for the Moscow Metro using the example of the Zamoskvoretskoye Depot of the Zamoskvoretskaya Line, the Vykhino Depot of the Tagansko-Krasnopresnenskaya Line, as well as the results of the system’s adaptation to the Moscow Central Circle. It also presents a comparative analysis of driver work schedules, i.e., the actual one and one obtained using the developed intelligent system. The application of the developed system may enable as much as a 28% improvement of the efficiency of metro train drivers’ work hour use.

Publisher

Journal Dependability

Subject

General Medicine

Reference10 articles.

1. Kulagin M.A., Markevich A.V., Sidorenko V.G. Vliyanie chelovecheskogo faktora na bezopasnost' dvizheniya poezdov // Trudy mezhdunarodnoi konferentsii «Problemy upravleniya bezopasnost'yu slozhnykh sistem» – XXVII. M.: IPU RAN. 2019. S. 265-270.

2. Finochenko T.A., Pereverzev I.G., Balanova M.V. Fizicheskie faktory, vozdeistvuyushchie na nadezhnost' raboty mashinistov kranov na zheleznodorozhnom khodu // Nadezhnost'. 2019. T. 19. № 1(68). S. 36-39.

3. Aliev O.T. Vozdeistvie vrednykh i opasnykh faktorov uslovii truda na mashinistov lokomotivov // Izvestiya Peterburgskogo universiteta putei soobshcheniya. 2015. №4 (45). S. 21-28.

4. Baranov L.A., Sidorenko V.G., Balakina E.P. i dr. Intellektual'noe tsentralizovannoe upravlenie dvizheniem vneulichnogo gorodskogo zheleznodorozhnogo transporta v usloviyakh intensivnogo dvizheniya // Nadezhnost'. 2021. T. 21. № 2. S. 17-23. DOI: 10.21683/1729-2646-2021-21-2-17-23

5. Svizhevskii V.A., Stovbur V.A. Sovremennye problemy gigienicheskogo normirovaniya fizicheskikh faktorov, vozdeistvuyushchikh na personal i passazhirov metropolitena // Acta Biomedica Scientifica. 2011. № 1-1. S. 273.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3