Author:
Dotsenko O. I.,Mischenko А. М.,Taradina G. V.
Abstract
The early signs of vibration effects on the human body are microcirculation and transcapillary metabolism disorders, accompanied by disruption of the supply to and utilization of oxygen in the tissues and organs. However, there are few experimental studies aimed at finding targets of vibration in cells and determining the action mechanism of vibration. In in vitro experiments, human erythrocytes in buffer solution were exposed to low-frequency vibration (frequency range 8–32 Hz, amplitudes 0.5–0.9 mm) for 3 hours. The dynamics of the accumulation of membrane-bound catalase and hemoglobin and the distribution of ligand hemoglobin in the membrane-bound fraction were studied as the indicators of functional activity of cells. The choice of these indicators is justified by the participation of catalase and hemoglobin in O2-dependent cellular reactions as a part of protein complexes. Since pО2 is a trigger of conformational transitions in the hemoglobin molecule, simultaneously with oxygen transport, hemoglobin signals to different metabolic systems about oxygen conditions in the environment. The studies revealed that in the conditions of vibration, the activity of membrane-associated catalase increased by 40–50% in the frequency range of 12–24 Hz (amplitude 0.5 ± 0.04 mm), by 20–30% in the amplitude of 0.9 mm, but after about 100–120 min exposure the enzyme activity decreased even below the control level. There was a dose-dependent accumulation of membrane-bound hemoglobin during exposure to vibration. In the membrane-bound fraction of hemoglobin, oxyhemoglobin had the highest content (60–80%), while the content of methemoglobin varied 5–20%. During vibrations in the frequency range 12–28 Hz, 0.5 mm, we recorded 10–30% increase in oxyhemoglobin. With increase in the vibration amplitude (0.9 mm) in the frequency range of 16–32 Hz, constant content of oxyhemoglobin was noted at the beginning of the experiment, which tended to decrease during the last exposure time. Frequency of 32 Hz caused increase in the deoxyhemoglobin content in the membrane-bound fraction. The content of methemoglobin (metHb) in erythrocytes significantly increased during exposure to the frequency range of 12–24 Hz, with the amplitude of 0.5 mm (1.3–2.4 times). During the exposure to frequencies of 28 and 32 Hz, we observed the transition of methemoglobin to hemichrome. The content of methemoglobin in the cells was lower and decreased at the end of the experiment when the vibration amplitude was 0.9 mm. In these experimental conditions, no increase in hemichrome content in the membrane-bound fraction was recorded. Therefore, the degree of binding of catalase and hemoglobin with the membrane of erythrocytes that were exposed to vibration and the changes in the content of ligand forms in the composition of membrane-bound hemoglobin are dose-dependent. Low-frequency vibration initiates O2-dependent processes in erythrocytes. Targets of such an influence are nanobubbles of dissolved air (babstons), retained on the surface of erythrocytes due to Coulomb interactions, capable of coagulation and increase in size under the action of vibration. At first, the consequences of these processes are increase in oxygen content in the surface of erythrocytes, and then decrease as a result of degassing. Thus, increase in oxygen content on the surface initiates redox reactions, whereas decrease in oxygen content leads to reconstruction of metabolic processes oriented at overcoming hypoxia.
Publisher
Oles Honchar Dnipropetrovsk National University