Numerical modeling of local effects on the petroleum reservoir using fixed streamtubes for typical waterflooding schemes

Author:

Potashev Konstantin A.1,Mazo Alexander B.1

Affiliation:

1. Kazan Federal University

Abstract

The difficulty of numerical modeling of areal methods of flows redistribution in the oil reservoir is the need for detailed resolution of local hydrodynamic effects and the fine geological structure of the reservoir, which are centimeter-wide, at inter-well distances of the order of several hundred meters. The dimension of computational grids of traditional 3D models of such resolution, even for impact areas containing a small number of injection and production wells, turns out to be excessively large for design calculations. To overcome these limitations, it is proposed to perform a detailed simulation of the flow in two-dimensional cross sections of the reservoir along fixed streamtubes of variable width between each pair of interacting injector and producer wells. Reducing the dimension of the problem allows the use of high-resolution grids to simulate short-term local effects. In this paper, we present an algorithm for constructing a single fixed streamtube between injector and producer, which provides a minimum error in calculating of flow rate and water cut using a two-phase flow problem of reduced dimension along the streamtube. The algorithm is demonstrated by the example of the two-dimensional two-phase flow problem neglecting capillary and gravitational forces in a homogeneous reservoir of constant thickness for three waterflooding elements corresponding to seven vertical well flooding patterns – standard and inverted four-spot, five-spot and seven-spot, as well as staggered line drive. For these waterflooding elements, efficient streamtubes have been constructed, the relative width of which is approximated by piecewise linear functions. On the example of a staggered line drive or five-spot well patterns, the width of the effective streamtube was parameterized for an arbitrary ratio of the sides of the waterflood element. Presented streamtubes can be used as ready templates for subsequent modeling of geological and technical treatments in the relevant elements of the water flooding of the oil reservoir.

Funder

Kazan Federal University

Publisher

Georesursy

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3