Target Acquisition and the Crowd Actor

Author:

Bigham Jeffrey P,Wobbrock Jacob O,Lasecki Walter S

Abstract

Work in human-computer interaction has generally assumed either a single user or a group of users working together in a shared virtual space. Recent crowd-powered systems use a different model in which a dynamic group of individuals (the crowd) collectively form a single actor that responds to real-time performance tasks, e.g., controlling an on-screen character, driving a robot, or operating an existing desktop interface. In this paper, we introduce the idea of the crowd actor as a way to model coordination strategies and resulting collective performance, and discuss how the crowd actor is influenced not only by the domain on which it is asked to operate but also by the personality endowed to it by algorithms used to combine the inputs of constituent participants. Nowhere is the focus on the individual performer more finely resolved than in the study of the human psychomotor system, a mainstay topic in psychology that, largely owing to Fitts' law, also has a legacy in HCI. Therefore, we explored our notion of a crowd actor by modeling the crowd as a individual motor system performing pointing tasks. We combined the input of 200 participants in a controlled offline experiment to demonstrate the inherent trade-offs between speed and errors based on personality, the number of constituent individuals, and the mechanism used to distribute work across the group. Finally, 10 workers participated in a synchronous experiment to explore how the crowd actor responds in a real online setting. This work contributes to the beginning of a predictive science for the general crowd actor model.

Publisher

Human Computation Institute

Subject

Materials Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human-in-the-loop Pose Estimation via Shared Autonomy;26th International Conference on Intelligent User Interfaces;2021-04-13

2. Scopist;Proceedings of the 14th International Web for All Conference;2017-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3