Author:
Leibrandt D.R.,Labaziewicz J.,Clark R.J.,Chuang I.L.,Epstein R.J.,Ospelkaus C.,Wesenberg J.H.,Bollinger J.H.,Leibfried D.,Wineland D.,Stick D.,Stick J.,Monroe C.,Pai, C.-S.,Low Y.,Frahm R.,Slusher R.E.
Abstract
A scalable, multiplexed ion trap for quantum information processing is fabricated and tested. The trap design and fabrication process are optimized for scalability to small trap size and large numbers of interconnected traps, and for integration of control electronics and optics. Multiple traps with similar designs are tested with $^{111}$Cd$^+$, $^{25}$Mg$^+$, and $^{88}$Sr$^{+}$ ions at room temperature and with $^{88}$Sr$^+$ at 6 K, with respective ion lifetimes of 90 s, 300 $\pm$ 30 s, 56 $\pm$ 6 s, and 4.5 $\pm$ 1.1 hours. The motional heating rate for $^{25}$Mg$^{+}$ at room temperature and a trap frequency of 1.6 MHz is measured to be 7 $\pm$ 3 quanta per millisecond. For $^{88}$Sr$^{+}$ at 6 K and 540 kHz the heating rate is measured to be 220 $\pm$ 30 quanta per second.
Subject
Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献