Abstract
Joint measurements of qubit observables have recently been studied in conjunction with quantum information processing tasks such as cloning. Considerations of such joint measurements have until now been restricted to a certain class of observables that can be characterized by a form of covariance. Here we investigate conditions for the joint measurability of arbitrary pairs of qubit observables. For pairs of noncommuting sharp qubit observables, a notion of approximate joint measurement is introduced. Optimal approximate joint measurements are shown to lie in the class of covariant joint measurements. The marginal observables found to be optimal approximators are generally not among the coarse-grainings of the observables to be approximated. This yields scope for the improvement of existing joint measurement schemes. Both the quality of the approximations and the intrinsic unsharpness of the approximators are shown to be subject to Heisenberg-type uncertainty relations.
Subject
Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献