Abstract
We classify multipartite entanglement in a unified manner, focusing on a duality between the set of separable states and that of entangled states. Hyperdeterminants, derived from the duality, are natural generalizations of entanglement measures, the concurrence, 3-tangle for 2, 3 qubits respectively. Our approach reveals how inequivalent multipartite entangled classes of pure states constitute a partially ordered structure under local actions, significantly different from a totally ordered one in the bipartite case. Moreover, the generic entangled class of the maximal dimension, given by the nonzero hyperdeterminant, does not include the maximally entangled states in Bell's inequalities in general (e.g., in the \(n \!\geq\! 4\) qubits), contrary to the widely known bipartite or 3-qubit cases. It suggests that not only are they never locally interconvertible with the majority of multipartite entangled states, but they would have no grounds for the canonical \(n\)-partite entangled states. Our classification is also useful for that of mixed states.
Subject
Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献