Admissible and minimax estimation of the parameters of the selected normal population in two-stage adaptive designs under reflected normal loss function

Author:

Mazarei Hasan,Nematollahi NaderORCID

Abstract

In clinical research, one of the key problems is to estimate the effect of the best treatment among the given k treatments in two-stage adaptive design. Suppose the effects of two treatments have normal distributions with means θ1 and θ2, respectively, and common known variance σ2. In the first stage, random samples of size n1 with means X1 and X2 are chosen from the two populations. Then the population with the larger or smaller sample mean XM is selected, and a random sample of size n2 with mean YM is chosen from this population in the second stage of design. Our aim is to estimate the mean θM or θJ of the selected population based on XM and YM in two-stage adaptive design under the reflected normal loss function. We obtain minimax estimators of θM and θJ, and then provide some sufficient conditions for the inadmissibility of estimators of θM and θJ. Theoretical results are augmented with a simulation study as well as a real data application.

Publisher

Wydawnictwo Uniwersytetu Wroclawskiego

Subject

Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low and high dimensional wavelet thresholds for matrix-variate normal distribution;Communications in Statistics - Simulation and Computation;2024-03-11

2. Bayesian Wavelet Stein’s Unbiased Risk Estimation of Multivariate Normal Distribution Under Reflected Normal Loss;Methodology and Computing in Applied Probability;2023-02-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3