Prediction and Fundamental Understanding of Stall Loads in UH-60A Pull-Up Maneuver

Author:

Abhishek A.,Ananthan Shreyas,Baeder James,Chopra Inderjit

Abstract

This paper isolates the physics governing the aerodynamics and structural dynamics of UH-60A rotor in an unsteady maneuvering flight and proposes a hypothesis for the mechanism of advancing blade stall observed during pull-up maneuvers. The advancing blade stall observed during the Counter 11029 pull-up maneuver is in addition to the two conventional dynamic stall events observed on the retreating side of the blade. Both lifting-line as well as computational fluid dynamics analyses predict all three stall cycles with calculated deformations. The advancing blade transonic stall, observed from revolution 12 onward, is a twist stall triggered by 5/rev elastic twist deformation that increases the angle of attack beyond the static stall limit, resulting in shock-induced flow separation culminating in stall. The 5/rev elastic twist is triggered by the two retreating blade stalls from previous revolution, which are separated by 1/5th rev. The accurate prediction of both stall cycles on retreating blade holds the key to prediction of advancing blade stall. In analysis, advancing blade stall is triggered by a correct combination of control angles and 5/rev elastic twist.

Publisher

American Helicopter Society

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3