Extracting Stochastic Airwake Models from a Database for Engineering Analysis and Simulation

Author:

Gaonkar Gopal H.,Mohan Ranjith

Abstract

A framework is presented for extracting interpretive models of airwake autocorrelation and autospectrum as well as crosscorrelation and cross-spectrum from a database. These models have a simple analytical structure that aids routine simulation and application as a predictive tool. Airwake refers to turbulence shed from the ship superstructure, and the database, to a set of spectral (autospectral and cross-spectral) points of flow velocity data from experimental and computational fluid dynamics–based investigations. The framework is developed from first principles: It is based on perturbation theory; it addresses all three velocity components, and it is tested against a comprehensive database under different superstructure and wind-over-deck conditions. For each velocity component, the autocorrelation and cross-correlation are represented by separate perturbation series in which the first terms have a form of the von Karman longitudinal or lateral correlation function. These series are then transformed into equivalent perturbation series of autospectra and cross-spectra. The perturbation coefficients are evaluated by satisfying the algorithmic constraints and fitting a curve on a set of selected spectral data points in the low-frequency bandwidth (0≤f(Hz)≤1.6); the emphasis is on extracting spectral models for this bandwidth. Generally, no more than a second-order perturbation correction (a three-term perturbation series) is necessary, and the extracted models lend themselves well to construction of shaping filters driven by white noise. The framework's strengths and weaknesses are discussed as well.

Publisher

American Helicopter Society

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3