Threedimensional reconstruction of substantia nigra pars compacta of human brain

Author:

Voronkov Dmitriy N.ORCID,Salkov Vladimir N.ORCID,Khudoerkov Rudolf M.ORCID

Abstract

Background. Up to the moment there is no universally accepted scheme of spatial organization of the groups of neurons of substantia nigra pars compacta of the human midbrain. A detailed study of the architectonics of this structure is necessary for pathomorphological analysis of agerelated changes in the nervous tissue and the associated neurodegenerative diseases with selective death of dopamine neurons. Aim. To clarify the peculiarities of the morphochemical organization of the substantia nigra (SN) of a human brain and to create a threedimensional model of pars compacta. Materials and Methods. Threedimensional reconstruction of substantia nigra pars compacta was performed on the brain autopsy material of individuals without neurological pathology (n=10, between 52 to 84 years of age) using a method of computed morphometry. Sections of the midbrain were stained by Nissl method and by an immunohistochemical method for localization of tyrosine hydroxylase – a marker of dopamine. Results. In the SN pars compacta accumulations of neurons were identified in the form of 9 bands oriented in the rostrocaudal direction and including four areas: medial, lateral, dorsal and ventral. Morphometric analysis detected significant differences in the density of neurons and in expression of tyrosine hydroxylase between the areas of SN. Conclusion. A model of cellular organization of SN pars compacta proposed by us on the basis of threedimensional reconstruction is characterized by a high degree of detalization as compared to similar works, and shows expressed spatial differentiation of the groups of neurons of SN which should be taken into consideration in pathomorphological examinations.

Publisher

ECO-Vector LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3