Assessing the geomechanical state of the main working network state in the case of undermining in the conditions of weak rocks

Author:

Symanovych HennadiiORCID,Odnovol MykolaORCID,Yakovenko ValeriiORCID,Sachko RomanORCID,Shaikhlislamova IrynaORCID,Reshetilova TetianaORCID,Stadnichuk MykolaORCID

Abstract

Purpose. Geomechanical substantiation and determination of the parting state parameters for specific mining-geological and mining-technical conditions based on the analysis in order to substantiate the safe operating conditions of the undermined main working network. Methods. An algorithm for studying the state of the undermined main working network includes: analysis of the texture and mechanical properties of parting rocks; mine instrumental observations of the rock pressure manifestations in the main workings; modeling of the parting state using the finite element method (FEM); calculation and analysis of its stress-strain state (SSS) with prediction of the degree of stope operations influence on possible violations of the requirements to safety rules for the main working network operation. Findings. The texture peculiarities and mechanical properties of lithotypes around the network of main workings, the parting and the zone of future stope operations in the lower seam have been analyzed. The current state of the main workings has been studied and, together with the preliminary analysis, the rock pressure manifestations with an emphasis on the probable stope operations influence in the lower seam are predicted. For the final solution of this issue, the parameters have been substantiated and a geomechanical model of a parting behavior has been developed. Having calculated and analyzed the SSS of parting rocks, the conclusion can be drawn about the possibility of safe operation of the main working network. Originality. New knowledge has been gained about the peculiarities of distributing SSS components in the parting, which are distinguished by its large thickness (about 100 m), but by weak strength properties of all lithotypes without exception, which are further reduced by weakening factors of fracturing, stratification and moisture from a large number of coal seams occurring throughout the height of a parting. To study the state of a parting, for the first time, a spatial geomechanical model has been validated and constructed, taking into account all the elements reflecting mining-technical situation. Practical implications. Based on the analysis of parting SSS, the existence of its stable part with a thickness of about 37 m has been proven, which ensures the absence of the stope operations influence in the lower seam on the state of the main working network of the upper horizon, that is, the safe conditions for their operation have been substantiated. The conducted research is the basis for the development of recommendations for ensuring accident-free operation.

Publisher

Dnipro University of Technology

Subject

Geochemistry and Petrology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3