Bridge Displacement Estimates from Measured Acceleration Records

Author:

Gindy Mayrai1,Nassif Hani H.2,Velde Jana3

Affiliation:

1. 201 Bliss Hall, Civil and Environmental Engineering, University of Rhode Island, 1 Lippitt Road, Kingston, RI 02881.

2. Civil and Environmental Engineering, Rutgers University, 131 A-Wing, SOE Building, 98 Brett Road, Piscataway, NJ 08854.

3. 307A Bliss Hall, Civil and Environmental Engineering, University of Rhode Island, 1 Lippitt Road, Kingston, RI 02881.

Abstract

Girder displacement is an important component of bridge design and evaluation because it is directly related to bridge stiffness and flexibility. The complex interaction between vehicle and bridge dynamics will result in vibration and deflection greater than that under equivalent static loading. However, field measurement of girder displacement generally is non-trivial. Different sensors and instrumentation systems can be used to measure bridge displacement. Some of these provide direct measurements, whereas others indirectly provide displacement through measurements of the angle of rotation, velocity, or acceleration of the girder. Indirect methods, however, require additional signal processing analyses to remove the effect of small errors in recordings caused by sensor drift, unknown initial bridge conditions, and signal noise. These errors become sufficiently large through successive integrations and greatly distort the integrated velocity and displacement signals. Two correction methods are examined, namely, the velocity estimation method and the linear baseline correction method (BCM), for minimizing such errors in obtaining displacements indirectly from acceleration records. Independently measured girder acceleration and displacement records from a three-span continuous bridge under controlled live load testing are used to evaluate the accuracy of each method. It is found that the linear BCM results in a corrected displacement profile that more reasonably approximates the measured trace under various loading patterns. The choice of integration boundaries is also shown to affect the accuracy of both methods. An objective approach based on the energy content of the signal is proposed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3