Evaluation of Fatigue Models of Hot-Mix Asphalt through Laboratory Testing

Author:

Adhikari Sanjeev1,Shen Shihui2,You Zhanping3

Affiliation:

1. Department of Industrial and Engineering Technology, Morehead State University, Morehead, KY 40351.

2. Department of Civil and Environmental Engineering, Washington State University, Pullman, WA 99164.

3. Department of Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931-1295.

Abstract

Many studies have investigated the fatigue resistance of hot-mix asphalt (HMA) mixtures on the basis of the material properties and structural responses. In this study, a four-point bending-beam fatigue apparatus was used to measure the fatigue life of a typical Michigan HMA mixture under various frequencies (1, 5, and 10 Hz) and temperatures (4°C, 13°C, and 21.3°C). The objective of this study was to evaluate laboratory models for predicting fatigue over wide ranges of testing conditions to rank their fatigue performance on the HMA mixtures. In addition, this paper aimed to correlate the flexural stiffness (modulus) with dynamic modulus, because the dynamic moduli of HMA are key input parameters in the Mechanistic–Empirical Pavement Design Guide (MEPDG). The correlation results showed a strong linear correlation between the flexural stiffness and dynamic modulus, with the flexural stiffness being 30% lower than the dynamic modulus. By providing a linkage between dynamic modulus and flexural stiffness, the study helped to substantiate the concept of using dynamic modulus in the MEPDG or to evaluate rutting. In addition, Rowe and Bouldin's stiffness degradation concept was used to compare the ability of different models to predict fatigue life. The results of this study showed that the energy-based fatigue prediction model, which considered rest periods, various testing temperatures, and loading frequencies, correlated well with the laboratory-determined fatigue life.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference11 articles.

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3