Predicting Asphalt Mixture Skid Resistance by Aggregate Characteristics and Gradation

Author:

Rezaei Arash1,Masad Eyad1,Chowdhury Arif2,Harris Pat2

Affiliation:

1. Zachry Department of Civil Engineering, 3136 TAMU, Texas A&M University, College Station, TX 77843.

2. Texas Transportation Institute, 3135 TAMU, Texas A&M University, College Station, TX 77843.

Abstract

The objective of this study was to investigate the influence of aggregate characteristics and gradation on the skid resistance of various asphalt mixtures. Asphalt mixture slabs with different combinations of aggregate sources and gradations were fabricated in the laboratory. These slabs were polished with a wheel-polishing device developed by the National Center for Asphalt Technology. The frictional characteristics of each slab were then measured by the sand patch method, British pendulum, dynamic friction tester, and circular texture meter. Aggregates used in these mixtures were characterized by petrographic analysis, conventional test methods (acid insolubility, magnesium soundness, Micro-Deval, and British polish value), and the aggregate imaging system (AIMS). In addition, the aggregate gradation of each mixture was described by the two-parameter cumulative Weibull distribution function. Statistical analysis of test results led to the development of a function for predicting the International Friction Index, which is a measure of skid resistance of asphalt mixtures, after different intervals of polishing. The parameters of this function were found to be related to ( a) initial and terminal aggregate texture measured by using AIMS, ( b) rate of change in aggregate texture measured by using AIMS after different polishing intervals in the Micro-Deval, and ( c) the Weibull distribution parameters describing aggregate gradation. This function can be useful for estimating the frictional characteristics of an asphalt mixture surface during the mixture design stage.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference22 articles.

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3