Effects of Environmental Variables on Infrared Imaging of Subsurface Features of Concrete Bridges

Author:

Washer Glenn1,Fenwick Richard1,Bolleni Naveen1,Harper Jennifer2

Affiliation:

1. Department of Civil and Environmental Engineering, University of Missouri, E2502 Lafferre Hall, Columbia, MO 65211.

2. Missouri Department of Transportation, 105 West Capitol Avenue, Jefferson City, MO 65102.

Abstract

Deterioration of concrete due to corrosion of embedded steel reinforcing bars and prestressing strands represents a significant challenge for inspection and maintenance engineers. Delaminations develop in the concrete manifest as spalling, which further exposes the steel to the corrosive environment and accelerates the deterioration process. The typical method for detecting these delaminations is hammer sounding, which requires hands-on access to the material under inspection. Specialized equipment and lane closures are frequently necessary to achieve the required access. Application of infrared imaging to detect the subsurface features in concrete can image such defects from a distance, such that direct access to the surface of the concrete is not required. However, the method relies on environmental conditions to create thermal gradients in the concrete so that these subsurface features can be detected. A study examined the optimum environmental conditions for detection of subsurface features in concrete. The goal was to provide guidance on the practical application of infrared imaging for inspection of concrete bridge components. The effects of solar loading from direct sunlight and wind speed have been examined to determine their impact on the detectability of subsurface features in concrete. The optimum time of day for detection of subsurface defects and the effect of their depth is discussed. Characteristics of optimum inspection conditions for using infrared cameras in the field are described.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference22 articles.

1. Application of infrared thermography to the non-destructive testing of concrete and masonry bridges

2. Principles of Thermography and Radar for Bridge Deck Assessment

3. AdamsT., PincheiraJ., and HuangY. H. Assessment and Rehabilitation Strategies/Guidelines to Maximize the Service Life of Concrete Structures. Wisconsin Highway Research Program, Madison, 2002, pp. 1–5.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3