Numerical Parametric Study of Strip Footing on Reinforced Embankment Soils

Author:

Abu-Farsakh Murad Y.1,Gu Jie2,Voyiadjis George2,Tao Mingjiang1

Affiliation:

1. Louisiana Transportation Research Center, Louisiana State University, 4101 Gourrier Avenue, Baton Rouge, LA 70808.

2. Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803.

Abstract

Finite element analyses were conducted to assess the benefits of reinforcing embankment soil of low to medium plasticity with geogrids beneath a strip footing from the perspective of the ultimate bearing capacity and footing settlement. The embankment soil was modeled with the Drucker-Prager constitutive model, and the soil-geogrid interaction was modeled by the Coulomb friction model. The finite element model was verified first by laboratory model tests; it was then used to analyze the strip footing sitting on the reinforced soil to seek an optimum reinforcement design. To this end, several geogrid-reinforcement design parameters–including effective reinforcing depth, vertical spacing between reinforcement layers, geogrid stiffness, soil-geogrid interaction coefficient, depth (top spacing) of first geogrid layer, footing embedment, and footing width–were investigated. The results of this study showed that the effective reinforcement depth was approximately 1.5 times the footing width, and an optimum depth of first reinforcement layer existed where the highest bearing capacity could be achieved. The influence of other design parameters on footing's bearing capacity and settlement was also analyzed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3