Incorporating Stochastic Road Capacity into Day-to-Day Traffic Simulation and Traveler Learning Framework

Author:

Jia Anxi1,Zhou Xuesong2,Li Mingxin3,Rouphail Nagui M.1,Williams Billy M.4

Affiliation:

1. Institute for Transportation Research and Education, North Carolina State University, Centennial Campus, Box 8601, Raleigh, NC 27695-8601.

2. 210 CME, Department of Civil and Environmental Engineering, University of Utah, 122 South Central Campus Drive, Salt Lake City, UT 84112-0561.

3. 119 CME, Department of Civil and Environmental Engineering, University of Utah, 122 South Central Campus Drive, Salt Lake City, UT 84112-0561.

4. Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC 27695-7908.

Abstract

A key foundation for developing strategies aimed at improving the efficiency and reliability of an urban transportation network is identifying the locations and impact of system bottlenecks. Although free-flow capacity and queue discharge rates at system bottlenecks have traditionally been modeled as fixed values, they are in fact random variables. Therefore, assessing the operational impact of network bottlenecks requires reliable and realistic tools that account for stochasticity in pre-breakdown flow rates and queue discharge rates. Focusing on methodological and analytic enhancements to existing dynamic traffic assignment models, this paper presents a method to seamlessly incorporate stochastic capacity models at freeway bottlenecks and signalized intersections and develops adaptive day-to-day traveler learning and route choice behavioral models under the travel time variability introduced by random capacity variations. To account for different levels of information availability and cognitive limitations of individual travelers, a set of bounded rationality rules are adapted to describe route choice rules for a traffic system with inherent process noise and different information provision strategies. A case study based on a real-world Portland, Oregon, subarea network is presented to illustrate the capabilities of the enhanced simulator and highlight the advantage of modeling stochastic capacity in a dynamic mesoscopic traffic simulator as compared with conventional tools that assume deterministic road capacity.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3