Modeling Driver Behavior in a Connected Environment: Integrated Microscopic Simulation of Traffic and Mobile Wireless Telecommunication Systems

Author:

Talebpour Alireza12,Mahmassani Hani S.1,Bustamante Fabián E.3

Affiliation:

1. Department of Civil Engineering, Robert R. McCormick School of Engineering and Applied Science, Transportation Center, 215 Chambers Hall, Northwestern University, 600 Foster Street, Evanston, IL 60208

2. Zachry Department of Civil Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843

3. Department of Electrical Engineering and Computer Science, Technological Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208

Abstract

Connected and autonomous vehicles will influence the future of the surface transportation system by enhancing safety, improving mobility, reducing energy consumption, and controlling emissions. The real-time information provided by connected vehicles technology allows drivers to become more aware of the surrounding traffic conditions and to maneuver safely and more efficiently. Furthermore, when coupled with onboard sensing technologies, the connected vehicles technology can improve the efficiency and the reliability of a driverless transportation network. This paper presents a comprehensive simulation framework to model driver behavior in a connected driving environment with connected vehicles. The framework, which consists of a microscopic traffic simulator integrated with a discrete-event communications network simulator, Network Simulator 3, forms a basis for exploration of the properties of the resulting traffic systems and assessment of the system-level impacts of these technologies. Furthermore, the connectivity of a vehicle-to-vehicle and vehicle-to-infrastructure communications network was investigated with the FHWA Next Generation Simulation: US-101 Highway data set (to represent vehicular movements in a highway environment). It was found that signal interference can result in information loss and partial connectivity. Finally, through the implementation of a speed harmonization algorithm, the paper discusses the importance of consideration of telecommunications along with vehicular movements to investigate the effects of connected vehicle applications on mobility and emissions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3