Exploring Properties of Networkwide Flow–Density Relations in a Freeway Network

Author:

Saberi Meead1,Mahmassani Hani S.1

Affiliation:

1. Transportation Center, Northwestern University, 600 Foster Street, Evanston, IL 60208-4055.

Abstract

The objective of this study is to investigate the properties of network-level traffic flow relationships in a freeway network with the use of commonly available loop detector data. The impact of the spatial and temporal distribution of congestion in a selected network on the shape and properties of the flow–density relation is investigated, with emphasis on the formation and characterization of hysteresis patterns. Accordingly, a path-dependent characterization of hysteresis patterns in freeway networks is introduced and illustrated conceptually as well as through empirical observations. Comparison of the spatial and temporal distribution of congestion throughout a selected subnetwork on different days suggests a relationship between the size of the hysteresis loop and the inhomogeneity of the traffic distribution. The maximum network average flow is not a constant value but varies across different days. In addition, for the same value of average network occupancy, the variation of occupancy is higher during the recovery period compared with the loading period. The observed large variation in network occupancy during recovery implies the formation of fragmented queues and traffic instability. A chaotic pattern is also to be expected in the networkwide flow–occupancy plane when the spatial distribution of link densities is inhomogeneous and the average network occupancy remains consistently high and roughly unchanged for successive time intervals. Overall, the study results provide a deeper understanding of the properties of networkwide relations on freeway networks.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perimeter Control-Based Coordinated Ramp Metering with Linked Queue Management for Freeway Networks;Transportation Research Record: Journal of the Transportation Research Board;2024-08-06

2. A multi-stage spatial queueing model with logistic arrivals and departures consistent with the microscopic fundamental diagram and hysteresis;Transportation Research Part B: Methodological;2024-08

3. Combination of H∞ perimeter control and route guidance for heterogeneous urban road networks;Transportmetrica B: Transport Dynamics;2024-06-06

4. Queue Length Prediction Using Traffic-theory-based Deep Learning;Transactions of the Japanese Society for Artificial Intelligence;2024-03-01

5. An MFD approach to route guidance with consideration of fairness;Transportation Research Part C: Emerging Technologies;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3