Defending Transportation Networks against Random and Targeted Attacks

Author:

Lou Yingyan1,Zhang Lihui2

Affiliation:

1. Department of Civil, Construction, and Environmental Engineering, University of Alabama, A127K Bevill Building, Box 870205, Tuscaloosa, AL 35487.

2. School of Transportation and Logistics, Dalian University of Technology, Dalian 116024, China.

Abstract

This paper explores several reliability and vulnerability measures for transportation networks and proposes three models for optimal resource allocation for transportation network design or defense to minimize the disruption caused by both random and targeted attacks. The common day-to-day disturbances with less severe consequences are referred to as random attacks, but targeted attacks include both coordinated terrorist strikes and large-scale natural disasters. For random attacks, the major concern would be the reliability of the total system travel time. A robust discrete network design problem is formulated to take into account random attacks in the planning stage. The transport capacity or the unsatisfied demand would be critical in case of emergency evacuation, and law enforcement forces could be deployed to prevent malicious attacks in the first place or to ensure a smooth evacuation operation. The proposed models feature an intrinsic trilevel game structure of the network users, the attacker, and the defender (planner). By exploring the unique properties of the proposed measures and reformulating the problems, the trilevel structure models are reduced to mixed-integer semi-infinite optimization programs. This paper further applies an active-set algorithm, combined with a cutting-plane scheme to solve the proposed models. Numerical examples indicate that the proposed formulations are valid and that the solution algorithm can solve the problems effectively and efficiently. The models for targeted attacks provide practical implications on identifying critical infrastructures for evacuation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3