Evaluation of New Dynamic Shear Rheometer Testing Geometry for Performance Testing of Crumb Rubber–Modified Binder

Author:

Baumgardner Gaylon1,D'Angelo John A.2

Affiliation:

1. Paragon Technical Services, P.O. Box 1639, Jackson, MS 39215.

2. D'Angelo Consulting, LLC, 8528 Canterbury Drive, Annandale, VA 22003.

Abstract

Crumb rubber modifier (CRM) has been used for many years in asphalt binder to provide improved field performance. Historically the increase in viscosity of CRM binder was measured with crude vane viscometers to quantify binder performance characteristics. The Superpave® system introduced far more accurate tools in the asphalt binder testing system to measure performance characteristics. As a result of testing geometry limitations, Superpave binder tests, specifically high-temperature testing, have generally not been applicable in testing CRM binders. This inability to test the material fully has limited the use and adoption of CRM binders. Well-known geometries in the rheology field, specifically coaxial cylinder geometries or cup and bob, can handle the larger particle sizes typically used as CRM. However, these geometries are not familiar in the asphalt industry. This study investigated the ability of the cup-and-bob geometry to test neat, polymer-modified, and CRM binders to determine if it could provide similar rheological results for both Superpave and multiple stress creep recovery (MSCR) testing. It concluded that the cup-and-bob geometry could accommodate large CRM particles and provide similar results for Superpave as well as MSCR testing.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference10 articles.

1. Use of Scrap Tire Rubber: State of the Technology and Best Practices. Office of Flexible Pavement Materials, Materials Engineering and Test Services, California Department of Transportation, Sacramento, 2005.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3