Low-Temperature Performance Characterization of Biomodified Asphalt Mixtures that Contain Reclaimed Asphalt Pavement

Author:

Hill Brian1,Oldham Daniel2,Behnia Behzad1,Fini Elham H.2,Buttlar William G.1,Reis Henrique3

Affiliation:

1. Department of Civil and Environmental Engineering, MC 250, 205 North Mathews Avenue, University of Illinois at Urbana–Champaign, Urbana, IL 61801.

2. Department of Civil, Architectural, and Environmental Engineering, North Carolina A&T State University, 447 McNair Hall, 1601 East Market Street, Greensboro, NC 27411.

3. Department of Industrial and Enterprise Systems Engineering, 104 South Mathews Avenue, University of Illinois at Urbana–Champaign, Urbana, IL 61801.

Abstract

The sustainability movement in paving materials has led to the increased use of reclaimed asphalt pavement (RAP). New developments in this area in the recent past include the use of biomodified asphalt binders (BMBs) such as those containing bio-oils derived from swine manure. The study reported in this paper examined the low-temperature properties of RAP and virgin BMB mixtures to determine if these mixtures exhibited better low-temperature performance than conventional hot-mix asphalt (HMA). Disk-shaped compact tension [DC(T)], Superpave® indirect tension (IDT), and acoustic emission (AE) tests were employed to characterize low-temperature properties of the asphalt mixtures. BMB mixtures exhibited higher DC(T) fracture energies than HMA at all RAP levels. In addition, BMB mixture fracture energy displayed a reduced dependence on RAP content. The difference in average fracture energy between BMB and HMA mixtures increased with higher RAP contents. Furthermore, BMB mixtures displayed consistently higher creep compliance, which indicated that these mixtures could alleviate thermal stresses more easily than HMA. A recently developed AE testing procedure evaluated the effects of BMB as well as RAP in the mixtures. The overall trends identified through AE testing were consistent with the findings from the DC(T) and IDT tests. In addition, AE results suggested a fundamental change in the behavior of the BMB RAP mixture relative to the HMA RAP mixture (i.e., rejuvenating effect). In general, it was observed that BMB RAP mixtures exhibited low-temperature cracking behavior superior to that of HMA mixtures.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3