Moisture Susceptibility Evaluation of Nanosize Hydrated Lime-Modified Asphalt–Aggregate Systems Based on Surface Free Energy Concept

Author:

Diab Aboelkasim1,You Zhanping1,Hossain Zahid2,Zaman Musharraf3

Affiliation:

1. Department of Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931-1295.

2. Civil Engineering, Arkansas State University, P.O. Box 1740, State University, AR 72467.

3. College of Engineering, University of Oklahoma, 202 West Boyd Street, CEC #107, Norman, OK 73019.

Abstract

Moisture susceptibility can cause cohesive and adhesive failures in the asphalt–aggregate system, resulting in serious pavement distresses. The role of regular hydrated lime (RHL) as an antistripping agent in asphalt pavements has been widely addressed with traditional moisture susceptibility evaluation methods. However, the use of nanosize hydrated lime (NHL) in asphalt industries has not yet been initiated. The first objective of this study was to assess the RHL- and NHL-modified asphalt binders on the basis of the surface free energy (SFE) concept by using the Wilhelmy plate method. Advera, a warm-mix asphalt (WMA) foaming additive, was added to the hydrated lime-(RHL and NHL) modified asphalt binders to address the effect of foaming on cohesive bond strength. The NHL material was added with particle sizes of 50 and 100 nanometers. The second objective was to address the adhesive bond strength between the aforementioned asphalt binders and different aggregates. Different acidic and basic aggregates with known SFE components were used along with measured SFE components of the asphalt binders to determine quantitatively the free energy of adhesion in the system. Overall results reveal that SFE components of asphalt binders are dependent on the particle size of hydrated lime. In general, the cohesive bond of the NHL-modified asphalt binder was higher than that of the RHL-modified binder. As hydrated lime particle size decreases, dry and wet adhesive bonds increase. Moisture susceptibility of Advera-foamed mixes seems to depend on aggregate type. The NHL-modified mixes are expected to perform better than RHL-modified mixes in dry and wet conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3