Affiliation:
1. Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, British Columbia V6T 1Z4, Canada.
Abstract
The potential for using computer vision techniques to solve several shortcomings associated with traditional road safety and behavior analysis is demonstrated. Surrogate data such as traffic conflicts provide invaluable information that can be used to understand collision-contributing factors and the collision failure mechanism better. Recent advances in computer vision techniques have encouraged the use of proactive safety surrogate measures such as detection of conflicts and violations. The objective of this study is to demonstrate the automated safety diagnosis of pedestrian crossing safety issues by using computer vision techniques. The automated safety diagnosis is applied at a major signalized intersection in downtown Vancouver, British Columbia, Canada, at which concerns had been raised regarding the high conflict rate between vehicles and pedestrians as well as the elevated number of traffic violations (i.e., jaywalking). This study is unique in its attempt to extract conflict indicators and detect violations from video sequences in a fully automated way. This line of research benefits safety experts because it provides a prompt and objective safety evaluation for intersections. The research also provides a permanent database for traffic information that can be beneficial for a sound safety diagnosis as well as for developing safety countermeasures.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献