Finite Element Analysis of the Effects of Bolt Condition on Bolted Rail Joint Stresses

Author:

Zhu Kaijun1,Edwards J. Riley1,Qian Yu1,Andrawes Bassem1

Affiliation:

1. Rail Transportation and Engineering Center–RailTEC, Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, 205 North Mathews Avenue, Urbana, IL 61801

Abstract

The rail joint is typically considered to be one of the weakest locations in the track superstructure. Defects and failures—including bolt hole cracks, head–web cracking or separation, broken or missing bolts, and joint bar cracking—have been found to start at rail joints and the area surrounding these joints. The initiation and propagation of these defects are primarily attributable to the discontinuities of both geometric and mechanical properties in the rail joint area and the high-impact loads induced by the discontinuities. Loosened or missing rail joint bolts can decrease the overall stiffness at the joint. A loosened rail joint can also accelerate certain types of defects, such as cracking around the bolt hole and the head–web fillet area (the upper fillet area) close to the rail end. These cracks present both economical and safety concerns as they can significantly reduce the service life of the rail or joint bar and even lead to breaks in the rail. However, the effect of bolt condition on stress propagation around bolted rail joints is not thoroughly understood. This study investigated the effects of bolt loading and missing-bolt configurations on the stress distribution at the bolt hole and the upper fillet area under static loading conditions. A comprehensive parametric analysis was performed with finite element modeling. Preliminary results showed that when bolt loading increased, the rail vertical displacement and stresses on the rail upper fillet decreased, but the stresses on bolt holes increased. The two center bolts, which were closest to the rail end, were the most sensitive bolts in terms of variation in stresses in response to changes in bolting and torqueing.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3