Modal Emissions Model for Heavy-Duty Diesel Vehicles

Author:

Barth Matthew1,Scora George1,Younglove Theodore1

Affiliation:

1. College of Engineering, Center for Environmental Research and Technology, University of California, Riverside, CA 92521

Abstract

There have been significant improvements in recent years in transportation and emissions modeling to allow better evaluations of transportation operational effects and associated vehicle emissions. In particular, instantaneous or modal emissions models have been developed for a variety of light-duty vehicles. To date, most of the effort has focused primarily on developing these models for light-duty vehicles with less effort devoted to heavy-duty diesel (HDD) vehicles. Although HDD vehicles currently make up only a fraction of the total vehicle population, they are major contributors to the emissions inventory. A description is provided of an HDD truck model that is part of a larger comprehensive modal emissions modeling (CMEM) program developed at the University of California (UC), Riverside. Several HDD truck submodels have been developed in the CMEM framework, each corresponding to a distinctive vehicle-technology category. The developed models use a parameterized physical approach in which the entire emission process is broken down into different components that correspond to physical phenomena associated with vehicle operation and emission production. A variety of trucks were extensively tested under a wide range of operating conditions at UC Riverside's Mobile Emissions Research Laboratory. The collected data were then used to calibrate the HDD models. Particular care was taken to investigate and implement the effects of varying grade and the use of variable fuel injection strategies. Results show good estimates for fuel use and the regulated emission species including nitrogen oxides, one of the key targets for HDD vehicles.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Designing sustainable logistics networks for classified municipal solid wastes collection and transferring with multi-compartment vehicles;Sustainable Cities and Society;2023-12

2. Assessment of On-Road High NOx Emitters by Using Machine Learning Algorithms for Heavy-Duty Vehicles;Emission Control Science and Technology;2023-11-08

3. The stochastic inventory routing problem on electric roads;European Journal of Operational Research;2023-10

4. Fuel Rate Prediction for Heavy-Duty Trucks;IEEE Transactions on Intelligent Transportation Systems;2023-08

5. Comprehensive Energy Modeling Framework for Multi-Powertrain Bus Transit Systems;Transportation Research Record: Journal of the Transportation Research Board;2023-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3