Wavelet-Based Pavement Distress Image Edge Detection with À Trous Algorithm

Author:

Wang Kelvin C. P.1,Li Qiang1,Gong Weiguo1

Affiliation:

1. Department of Civil Engineering, University of Arkansas, 4190 Bell Engineering, Fayetteville, AR 72701.

Abstract

Edge detection is an alternative method in the process for identifying and classifying pavement cracks for automated pavement evaluation systems. A number of edge detectors are widely used in image processing; most specify only a spatial scale for detecting edges. However, pavement surface images frequently have various details at different scales. Therefore, wavelet-based multiscale technique can be a candidate to extract edge information from pavement surface images. Instead of detecting edges in the space domain, wavelet analysis has the ability to describe both domains in time and in frequency. It was first applied in image edge detection in 1992, using the local maximum of the magnitude of the gradient to obtain edge representation. Nevertheless, this subsampling algorithm leads to a loss of translation variance and may produce many artifacts. In this paper, wavelet edge detection based on à trous algorithm (holes algorithm) is used in pavement distress segmentation. This algorithm is an undecimated wavelet transform executed via a filter bank without subsampling process. Translation invariance is one of its most important advantages. Therefore, the algorithm can minimize the artifact in the denoised data. Results of experiments on images are discussed in the paper. By comparisons with the results derived from five other traditional edge detectors, the study demonstrates the validity and effectiveness of this method for edge detection of pavement surface distresses.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3