A new approach for the preparation of cellulose nanocrystals from bamboo pulp through extremely low acid hydrolysis

Author:

ZHANG YONGQI,XU YONGJIAN,YUE XIAOPENG,DAI LEI,GAO MINLAN,ZHI YUN

Abstract

As a renewable and biodegradable nanomaterial, cellulose nanocrystal (CNC) has a wide range of potential applications, but production of CNC faces significant challenges in capital investment and manufacturing cost. In this work, the one-step preparation of CNC from bleached kraft bamboo pulp by extremely low acid (concentration of acid ≤ 0.1 wt%) hydrolysis was demonstrated. The experimental data indicated that the yield of CNC was strongly affected by the operating pressure and concentration of hydrochloric acid (HCl), as well as temperature. Rod-like CNC with a mean particle size of 524 nm was obtained through an extremely low acid (ELA) hydrolysis process. The yield of CNC can reach to 37.1% by an ELA hydrolysis process at 180°C for 60 min with 0.08 wt% HCl and 20 MPa operating pressure. The Fourier transform-infrared spectroscopy (FTIR) measurements show that the as-pre-pared CNC maintained cellulose structure. Compared with a conventional CNC prepared by strong sulfuric acid (H2SO4) hydrolysis, the CNC prepared by ELA hydrolysis process exhibited much higher thermal stability.

Publisher

TAPPI

Subject

Mechanical Engineering,General Materials Science,Media Technology,General Chemical Engineering,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3