Author:
ZHANG YONGQI,XU YONGJIAN,YUE XIAOPENG,DAI LEI,GAO MINLAN,ZHI YUN
Abstract
As a renewable and biodegradable nanomaterial, cellulose nanocrystal (CNC) has a wide range of potential applications, but production of CNC faces significant challenges in capital investment and manufacturing cost. In this work, the one-step preparation of CNC from bleached kraft bamboo pulp by extremely low acid (concentration of acid ≤ 0.1 wt%) hydrolysis was demonstrated. The experimental data indicated that the yield of CNC was strongly affected by the operating pressure and concentration of hydrochloric acid (HCl), as well as temperature. Rod-like CNC with a mean particle size of 524 nm was obtained through an extremely low acid (ELA) hydrolysis process. The yield of CNC can reach to 37.1% by an ELA hydrolysis process at 180°C for 60 min with 0.08 wt% HCl and 20 MPa operating pressure. The Fourier transform-infrared spectroscopy (FTIR) measurements show that the as-pre-pared CNC maintained cellulose structure. Compared with a conventional CNC prepared by strong sulfuric acid (H2SO4) hydrolysis, the CNC prepared by ELA hydrolysis process exhibited much higher thermal stability.
Subject
Mechanical Engineering,General Materials Science,Media Technology,General Chemical Engineering,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献