Impact of the Porosity from Incremental and Bulk Resin Composite Filling Techniques on the Biomechanical Performance of Root-Treated Molars

Author:

Pereira RAS,Soares PBF,Bicalho AA,Barcelos LM,Oliveira LRS,Soares CJ

Abstract

SUMMARY Objectives: To analyze the effect of the porosity caused by incremental and bulk resin composite filling techniques using low- and high-viscosity composite resins on the biomechanical performance of root-treated molars. Methods: Forty intact molars received standardized mesio-occlusal-distal (MOD) cavity preparation, were root treated, and randomly divided into four groups with different filling techniques (n=10). The first involved two incremental filling techniques using VIT/Z350XT, a nanofilled composite resin (Filtek Z350XT, 3M ESPE) associated with a resin-modified glass ionomer cement, and resin-modified glass ionomer cement (RMGIC; Vitremer, 3M ESPE) for filling the pulp chamber. The second involved TPH/VIT, a microhybrid composite resin TPH3 Spectrum associated with Vitremer. The third and fourth involved two bulk-fill composite resins: SDR/TPH, a low-viscosity resin composite (Surefill SDR flow, Dentsply) associated with TPH3 Spectrum, and POST, a high-viscosity bulk-fill resin composite (Filtek Bulk Fill Posterior, 3M ESPE). The volume of the porosity inside the restoration was calculated by micro-CT. The cusp deformation caused by polymerization shrinkage was calculated using the strain-gauge and micro-CT methods. The cusp deformation was also calculated during 100 N occlusal loading and loading to fracture. The fracture resistance and fracture mode were recorded. Data were analyzed by one-way analysis of variance and Tukey test. The fracture mode was analyzed by the χ2 test. The volume of the porosity was correlated with the cusp deformation, fracture resistance, and fracture mode (a=0.05). Results: Incremental filling techniques associated with RMGIC resulted in a significantly higher porosity than that of both bulk-fill techniques. However, no significant difference was found among the groups for the fracture resistance, fracture mode, and cusp deformation, regardless of the measurement time and method used. No correlation was observed between the volume of the porosity and all tested parameters. Conclusions: The porosity of the restorations had no influence on the cuspal deformation, fracture resistance, or fracture mode. The use of the RMGIC for filling the pulp chamber associated with incremental composite resins resulted in similar biomechanical performance to that of the flowable or regular paste bulk-fill composite resin restorations of root-treated molars.

Publisher

Operative Dentistry

Subject

General Dentistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3