Evaluating the effect of various types of disinfectants on bacterial biofilms

Author:

Yushina Yu. K.1ORCID,Nasyrov N. A.2ORCID,Zaiko E. V.1ORCID,Grudistova M. A.1ORCID,Reshchikov M. D.1

Affiliation:

1. V. M. Gorbatov Federal Research Center for Food Systems

2. V. M. Gorbatov Federal Research Center for Food Systems

Abstract

Biofilm formation on equipment surfaces is a potential food safety hazard, providing increased resistance and persistence of pathogens and spoilage microorganisms in food production environments. The issue of preventing the biofilm formation is extremely important, since a wide range of disinfectants does not always provide the proper effect. The article discusses the antimicrobial effectiveness of disinfectants with various active ingredients (based on active chlorine, peracetic acid and quaternary ammonium compounds (QAC) with enzymatic substances) on binary biofilms. The objects of the study were the strains of pathogenic and opportunistic microorganisms isolated from abiotic surfaces of food production environments and food products. Different effects of disinfectants on biofilms formed by bacteria have been established. Disinfectant based on peracetic acid and chlorine had the greatest effect on binary biofilms of Brochothrix thermosphacta/Salmonella spp. and Staphylococcus equorum/Salmonella spp. The greatest antimicrobial effect on biofilm of Listeria monocytogenes 12/Pseudomonas azotoformans 6 was shown by a chlorine-based disinfectant. Disinfectants based on chlorine and QAC with enzymatic substances were most effective against the binary biofilm of L. monocytogenes 12/Salmonella spp. 14. However, none of the disinfectants had absolute antimicrobial effectiveness against the studied binary biofilms. Biofilm-forming microorganisms have shown resistance to the recommended concentrations of disinfectants. Therefore, currently, it is extremely important to revise approaches to hygiene at enterprises by finding working concentrations of new antimicrobial agents and new procedure that are effective for destroying biofilms.

Publisher

The Gorbatov's All-Russian Meat Research Institute

Subject

Food Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3