Biomechanical testing of a β-tricalcium phosphate wedge for advancement of the tibial tuberosity

Author:

Barthelemy N.,Brunel L.,Claeys S.,Balligand M.,Etchepareborde S.

Abstract

SummaryObjectives: to evaluate in vitro the strength of different compositions of beta-tricalcium phosphate (β-TCP) wedges in comparison with titanium foam and cages. To study the response to cyclic loading of the strongest β-TCP wedge, titanium foam and titanium cage.Methods: Compression test: Twenty-five tibiae were prepared for tibial tuberosity advancement using the modified Maquet technique. Five groups were defined depending on the material used to maintain the tibial tuberosity: Group 1 = titanium cage; Group 2 = wedges of porous titanium foam with 50% porosity (OrthoFoam®); Group 3 = blocks of biphasic synthetic bone (60% hydroxyapatite [HAP] and 40% _-TCP, porosity 80%); Group 4 = blocks of biphasic synthetic bone (60% HAP and 40% _-TCP, porosity 70%) and Group 5 = blocks of biphasic synthetic bone (65% HAP and 35% _-TCP, porosity 60%). Loads to failure were calculated for each implant. Cyclic study: Five additional tibiaes of group 1, 2 and 5 were fatigue tested from 100 to 500 N at a rate of 4 Hz for 200,000 cycles or until failure.Results: Compression test: For the five groups, the mean load at failure was 1895 N, 1917 N, 178 N, 562 N and 1370 N respectively. Cyclical study: All samples in the three groups tested withstood 200,000 cycles without failure.Clinical significance: The ideal implant to maintain tibial tuberosity advancement after the modified Maquet technique would be absorbable and allow osteoconduction and osteoinduction. As such, β-TCP wedges have many advantages and our study shows that they can withstand loads in the patellar tendon up to 500 N over 200,000 cycles in vitro and deserve more investigation.

Publisher

Georg Thieme Verlag KG

Subject

General Veterinary,Animal Science and Zoology

Reference35 articles.

1. Montavon PM, Damur DM, Tepic S. Advancement of the tibial tuberosity for the treatment of cranial cruciate deficient canine stifle. Proceedings of the 1st World Orthopedic Veterinary Congress; 2002 September 5; Munich, Germany. pg. 152

2. Tepic S, Damur DM, Montavon PM. Biomechanics of the stifle joint. Proceedings of the 1st World Orthopaedic Veterinary Congress 2002 September 5; Munich, Germany. pg. 189-190

3. Maquet P. Advancement of the tibial tuberosity. Clin Orthop Relat Res 1976: 225-230

4. Mechanical testing of a modified stabilisation method for tibial tuberosity advancement

5. Preliminary experience of a modified Maquet technique for repair of cranial cruciate ligament rupture in dogs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3