• 摘要

    激光雷达在无人驾驶领域占据了重要地位,地面滤波是从激光雷达获取的点云数据中分离和提取地面信息的关键技术。文章首先简述了车载激光雷达(VLS)的发展及分类,并讨论了各类车载激光雷达的优缺点;然后研究了VLS地面滤波算法的发展并进行梳理分类,阐述了地面滤波精度的评估方法和评估标准,并以三种典型的算法为例进行比较分析;最后总结了当前VLS硬件和地面滤波算法的不足,并展望未来发展趋势。

    关键词

    Abstract

    LiDAR plays an important role in the field of unmanned driving. Ground filtering is the key technology to separate and extract the ground information from the point cloud data acquired by LiDAR. Firstly, the development and classification of vehicle LiDAR scans (VLS) are introduced, and the advantages and disadvantages of all kinds of VLS are discussed. Then, the development of VLS ground filtering algorithm is studied and classified. The evaluation methods and standards of ground filtering accuracy are described, and three typical algorithms are compared and analyzed. Finally, the shortcomings of current VLS and its ground filtering algorithms are summarized, and the future development trend is prospected.

    Keywords

  • Opto-Electronic Science, 2022, 1(4): 210005. https://www.oejournal.org/article/doi/10.29026/oes.2022.210005.

    基于上述问题,希腊研究与技术基金会电子结构与激光研究所(IESL) Emmanuel Stratakis教授团队对有机-无机钙钛矿晶相的电荷载流子动力学变化进行了深入研究。在低于室温的温度下,比较玻璃/钙钛矿结构(参考)和两种不同的玻璃/ITO/HTL/钙钛矿构型的微光致发光(μPL)和超快时间分辨瞬态吸收光谱( TAS )的结果。该工作的目的是探索和揭示不同钙钛矿晶相的电荷载流子动力学,同时也考虑所使用的空穴传输层聚合物的影响。先在玻璃、PEDOT:PSS和PTAA聚合物上分别沉积CH3NH3PbI3 (钙钛矿)薄膜,并在85 K至215 K的温度范围内研究所制备的玻璃/CH3NH3PbI3和玻璃/ITO/HTL/ CH3NH3PbI3结构,以探索CH3NH3PbI3斜方和四方晶相的电荷提取动力学。研究表明,低温下的载流子动力学不仅受空穴传输层的影响,还与不同钙钛矿的晶相密切相关。

    近年来,尽管有机-无机卤化铅钙钛矿在能量转换应用方面引起了巨大的科学关注,但钙钛矿光伏器件中温度和空穴传输层( HTL )类型对电荷载流子动力学和复合过程的影响仍在很大程度上未被探究。

    The Ultrafast Laser Micro- and Nano- processing group (ULMNP) of IESL described micro photoluminescence (μPL) and ultrafast time resolved transient absorption spectroscopy (TAS) results in a reference Glass/Perovskite architecture and two different Glass/ITO/HTL/Perovskite configurations at temperatures below room temperature. The objective of this work is to probe and shed light on the charge carrier dynamics of different perovskite crystalline phases, while considering also the effect of the employed hole transport layer (HTL) polymer. Namely, CH3NH3PbI3 films were deposited on Glass, PEDOT:PSS and PTAA polymers, and the developed Glass/CH3NH3PbI3 and Glass/ITO/HTL/CH3NH3PbI3 architectures were studied from 85 up to 215 K in order to explore the charge extraction dynamics of the CH3NH3PbI3 orthorhombic and tetragonal crystalline phases. Interestingly enough, the article reports evidence that the charge carrier dynamics at low temperatures, are not only affected by the employed hole transport layer, but in addition are strongly correlated to the different perovskite crystal phases.

    Despite that organic-inorganic lead halide perovskites have attracted enormous scientific attention for energy conversion applications over the recent years, the influence of temperature and the type of the employed hole transport layer (HTL) on the charge carrier dynamics and recombination processes in perovskite photovoltaic devices is still largely unexplored. In particular, significant knowledge is missing on how these crucial parameters for radiative and non-radiative recombinations, as well as for efficient charge extraction vary among different perovskite crystalline phases that are induced by temperature variation.

    Opto-Electronic Science, 2022, 1(4): 210005. https://www.oejournal.org/article/doi/10.29026/oes.2022.210005.

  • 基金

    基金项目: 

    装备发展部十三五预研基金 41415010503

    Funds: 

    The 13th Five Year Plan Pre-Research Fund of Equipment Development Department 41415010503

  • 参考文献

    刘博, 于洋, 姜朔.激光雷达探测及三维成像研究进展[J].光电工程, 2019, 46(7): 190167.

    DOI: 10.12086/oee.2019.190167

    Liu B, Yu Y, Jiang S. Review of advances in LiDAR detection and 3D imaging[J]. Opto-Electronic Engineering, 2019, 46(7): 190167.

    DOI: 10.12086/oee.2019.190167

    Habermann D, Hata A, Wolf D, et al. 3D point clouds segmentation for autonomous ground vehicle[C]//2013 Ⅲ Brazilian Symposium on Computing Systems Engineering, Niteroi, Brazil, 2013: 143-148.

    刘志青, 黄沈华, 马琪, 等.基于混合最小二乘与总体最小二乘的激光雷达滤波算法[J].测绘与空间地理信息, 2019, 42(2): 30-33.

    https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201902009.htm

    Liu Z Q, Huang S H, Ma Q, et al. LiDAR filtering algorithm based on mixed least squares and total least squares[J]. Geomatics & Spatial Information Technology, 2019, 42(2): 30-33.

    https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201902009.htm

    邱纯鑫.激光雷达与自动驾驶的产业化之路[J].人工智能, 2018(6): 37-47.

    https://www.cnki.com.cn/Article/CJFDTOTAL-DKJS201806006.htm

    Qiu C X. Lidar and the industrialization of automatic driving[J]. Artificial Intelligence, 2018(6): 37-47.

    https://www.cnki.com.cn/Article/CJFDTOTAL-DKJS201806006.htm

    展开
  • 版权信息

    版权属于中国科学院光电技术研究所,但文章内容可以在本网站免费下载,以及免费用于学习和科研工作
  • 关于本文

    DOI: 10.12086/oee.2020.190688
    引用本文
    Citation:
    黄思源, 刘利民, 董健, 傅雄军. 车载激光雷达点云数据地面滤波算法综述[J]. 光电工程, 2020, 47(12): 190688. DOI: 10.12086/oee.2020.190688
    Citation:
    Huang Siyuan, Liu Limin, Dong Jian, Fu Xiongjun. Review of ground filtering algorithms for vehicle LiDAR scans point cloud data. Opto-Electronic Engineering 47, 190688 (2020). DOI: 10.12086/oee.2020.190688
    导出引用
    出版历程
    • 收稿日期 2019-11-12
    • 修回日期 2020-01-13
    • 刊出日期 2020-12-14
    文章计量
    访问数(11851) PDF下载数(3059)
    分享:
  • 相关文章

    [1] 严梓峻, 刘众, 杨晓, 赖寿强, 颜丰裕, 林宗民, 林岳, 吕毅军, 郭浩中, 陈忠, 吴挺竹. 钙钛矿量子点色转换Micro-LEDs:稳定性与图案化研究进展 [J]. 光电工程, 2024, 51(7): 240088. DOI: 10.12086/oee.2024.240088
    [2] 用于光发射和光检测的新型钙钛矿电化学电池 [J]. 光电工程, 2024, 51(6): 241006. DOI: 10.12086/oee.2024.241006.h02
    [3] 非接触式微球辅助超快激光纳米图案化技术 [J]. 光电工程, 2024, 51(4): 241004. DOI: 10.12086/oee.2024.241004.h01
    [4] 余建, 杨焕, 吴建根, 吴宜翔, 徐凯臣. 超快激光制造表面增强拉曼散射传感器 [J]. 光电工程, 2023, 50(3): 220333. DOI: 10.12086/oee.2023.220333
    [5] 邬映杰, 伍志林, 王玲, 辇伟奇, 何邕, 郭永彩. 基于无机卤化物钙钛矿湿度传感器的呼吸率监测系统 [J]. 光电工程, 2021, 48(3): 200100. DOI: 10.12086/oee.2021.200100
    [6] 樊非, 徐曦, 许乔, 王健, 钟波, 谢瑞清, 雷向阳, 陈贤华, 汪圣飞, 侯晶, 邓文辉, 安晨辉, 周炼, 赵世杰, 廖德锋, 朱玉洁. 大口径强激光光学元件超精密制造技术研究进展 [J]. 光电工程, 2020, 47(8): 200135. DOI: 10.12086/oee.2020.200135
    [7] 陈卫, 伍越, 罗杰, 刘进博, 王磊, 朱新新, 朱涛. 点测量激光吸收光谱技术理论分析 [J]. 光电工程, 2019, 46(10): 180575. DOI: 10.12086/oee.2019.180575
    [8] 梁楠, 张斐然, 蔡帅, 李博, 李涛. 电荷累加型TDICMOS探测器测试方法研究 [J]. 光电工程, 2019, 46(8): 180504. DOI: 10.12086/oee.2019.180504
    [9] 季凌飞, Amina, 燕天阳, 王文豪, 王亭入, 林真源, 杨强, 胡莉婷. 基于成丝效应的超快激光加工技术工业化应用研究之探析 [J]. 光电工程, 2017, 44(9): 851-861. DOI: 10.3969/j.issn.1003-501X.2017.09.001
    [10] 王卫, 张红. 有机半导体/金属杂化纳米结构中的强耦合相互作用及超快动力学特性 [J]. 光电工程, 2017, 44(2): 161-171. DOI: 10.3969/j.issn.1003-501X.2017.02.004
  • 车载激光雷达类型 工作原理 优点 缺点 厂商/研究机构代表
    机械式旋转
    激光雷达
    通过部件的机械旋转完成激光扫描 大扫描视场和高扫描效率,可承受的激光功率高 机械结构复杂,设备难以小型化,行车环境下磨损严重,使用寿命短,价格高昂 Velodyne公司(美国)
    Quanergy公司(德国)
    上海禾赛光电
    深圳速腾聚创
    混合固态
    激光雷达
    通过MEMS振镜旋转完成激光扫描 实现了一定程度的小型化,响应速度较快 接收光路复杂,使用寿命短,扫描受限于振镜的偏转范围 Msotek公司(韩国)
    Innoviz公司(以色列)
    光学相控阵型
    激光雷达
    通过控制合成光束的指向完成激光扫描 无惯性器件,精确稳定,方向可任意控制 需要消除旁瓣的影响,难以实现水平360°扫描 Quanergy公司(美国)
    Blackmore公司(美国)
    闪光型
    激光雷达
    采用单脉冲直接向各个方向漫射,利用飞行时间成像 只要一次快闪便能照亮整个场景,避免运动畸变 探测精度随距离增加明显降低,视场角受限 亚德诺半导体公司
    (美国)
    文章中查看 下载
  • 滤波结果
    地面点 非地面点 总和
    标定数据 地面点 a b e=a+b
    非地面点 c d f=c+d
    总和 g=a+c h=b+d n=e+f
    文章中查看 下载
  • 算法名称 算法类型 算法时间复杂度T(n) 算法空间复杂度S(n) 参数/单位 参数取值范围/步进值 最优结果
    最优结果对应参数 Ⅰ类误差 Ⅱ类误差 总误差 Kappa系数
    向上生长滤波算法 基于空间划分 O(n/m) O(9(m-1)) 网格长度/m 0.1~0.5/0.1 0.2 0.0153 0.3854 0.1420 0.6553
    网格高度/m 0.1~0.5/0.1 0.2
    高度阈值/m -1.4~-0.4/0.1 -0.9
    相邻点连线滤波算法 基于扫描线 O(n) O(n) 坡度系数 0.003~0.0074 /0.0002 0.0032 0.0900 0.2113 0.1297 0.7035
    高度阈值/m -1.4~-0.4/0.1 -1.1
    坡度值区域增长滤波算法 基于局部特征 O(n) O(n) 坡度阈值/(°) 5~45/1.0 41 0.0675 0.1107 0.0824 0.7821
    高度阈值/m -1.4~-0.4/0.1 -1.1
    文章中查看 下载

刘博, 于洋, 姜朔.激光雷达探测及三维成像研究进展[J].光电工程, 2019, 46(7): 190167.

DOI: 10.12086/oee.2019.190167

Liu B, Yu Y, Jiang S. Review of advances in LiDAR detection and 3D imaging[J]. Opto-Electronic Engineering, 2019, 46(7): 190167.

DOI: 10.12086/oee.2019.190167

Habermann D, Hata A, Wolf D, et al. 3D point clouds segmentation for autonomous ground vehicle[C]//2013 Ⅲ Brazilian Symposium on Computing Systems Engineering, Niteroi, Brazil, 2013: 143-148.

刘志青, 黄沈华, 马琪, 等.基于混合最小二乘与总体最小二乘的激光雷达滤波算法[J].测绘与空间地理信息, 2019, 42(2): 30-33.

https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201902009.htm

Liu Z Q, Huang S H, Ma Q, et al. LiDAR filtering algorithm based on mixed least squares and total least squares[J]. Geomatics & Spatial Information Technology, 2019, 42(2): 30-33.

https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201902009.htm

邱纯鑫.激光雷达与自动驾驶的产业化之路[J].人工智能, 2018(6): 37-47.

https://www.cnki.com.cn/Article/CJFDTOTAL-DKJS201806006.htm

Qiu C X. Lidar and the industrialization of automatic driving[J]. Artificial Intelligence, 2018(6): 37-47.

https://www.cnki.com.cn/Article/CJFDTOTAL-DKJS201806006.htm

陈晓冬, 张佳琛, 庞伟凇, 等.智能驾驶车载激光雷达关键技术与应用算法[J].光电工程, 2019, 46(7): 190182.

DOI: 10.12086/oee.2019.190182

Chen X D, Zhang J C, Pang W S, et al. Key technology and application algorithm of intelligent driving vehicle LiDAR[J]. Opto-Electronic Engineering, 2019, 46(7): 190182.

DOI: 10.12086/oee.2019.190182

陈敬业, 时尧成.固态激光雷达研究进展[J].光电工程, 2019, 46(7): 190218.

DOI: 10.12086/oee.2019.190218

Chen J Y, Shi Y C. Research progress in solid-state LiDAR[J]. Opto-Electronic Engineering, 2019, 46(7): 190218.

DOI: 10.12086/oee.2019.190218

Douillard B, Underwood J, Vlaskine V, et al. A pipeline for the segmentation and classification of 3D point clouds[C]//The 12th International Symposium on Experimental Robotics (ISER), Berlin, Heidelberg, 2014: 585-600.

Zhu Z, Liu J L. Graph-based ground segmentation of 3D LIDAR in rough area[C]//2014 IEEE International Conference on Technologies for Practical Robot Applications, Woburn, MA, USA, 2014.

Thrun S, Montemerlo M, Dahlkamp H, et al. Stanley: the robot that won the DARPA grand challenge[J]. Journal of Field Robotics, 2006, 23(9): 661-692.

DOI: 10.1002/rob.20147

Douillard B, Underwood J, Melkumyan N, et al. Hybrid elevation maps: 3D surface models for segmentation[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, China, 2010: 1532-1538.

Kammel S, Pitzer B. Lidar-based lane marker detection and mapping[C]//2008 IEEE Intelligent Vehicles Symposium, Eindhoven, Netherlands, 2008: 1137-1142.

Guo C Z, Sato W, Han L, et al. Graph-based 2D road representation of 3D point clouds for intelligent vehicles[C]//2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 2011: 715-721.

Douillard B, Underwood J, Kuntz N, et al. On the segmentation of 3D LIDAR point clouds[C]//2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 2011: 2798-2805.

Zhao G Q, Yuan J S. Curb detection and tracking using 3D-LIDAR scanner[C]//2012 19th IEEE International Conference on Image Processing, Orlando, FL, USA, 2012: 437-440.

Chen T T, Dai B, Liu D X, et al. 3D LIDAR-based ground segmentation[C]//The First Asian Conference on Pattern Recognition, Beijing, China, 2011: 446-450.

Guan H Y, Yu Y T, Ji Z, et al. Deep learning-based tree classification using mobile LiDAR data[J]. Remote Sensing Letters, 2015, 6(11): 864-873.

DOI: 10.1080/2150704X.2015.1088668

Guan H Y, Yu Y T, Li J, et al. Pole-like road object detection in mobile LiDAR data via supervoxel and bag-of-contextual-visual-words representation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(4): 520-524.

DOI: 10.1109/LGRS.2016.2521684

Husain A, Vaishya R C. A time efficient algorithm for ground point filtering from mobile LiDAR data[C]//2016 International Conference on Control, Computing, Communication and Materials (ICCCCM), Allahbad, India, 2016.

Montemerlo M, Becker J, Bhat S, et al. Junior: the stanford entry in the urban challenge[J]. Journal of Field Robotics, 2008, 25(9): 569-597.

DOI: 10.1002/rob.20258

Himmelsbach M, Hundelshausen F V, Wuensche H J. Fast segmentation of 3D point clouds for ground vehicles[C]//2010 IEEE Intelligent Vehicles Symposium, San Diego, CA, USA, 2010: 560-565.

Yang B S, Fang L N, Li J. Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 79: 80-93.

DOI: 10.1016/j.isprsjprs.2013.01.016

Hu X Y, Li X K, Zhang Y J. Fast filtering of LiDAR point cloud in urban areas based on scan line segmentation and GPU acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 308-312.

DOI: 10.1109/LGRS.2012.2205130

Hata A Y, Wolf D F. Feature detection for vehicle localization in urban environments using a multilayer LIDAR[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2): 420-429.

http://ieeexplore.ieee.org/document/7279128/

Zhou Y, Wang D, Xie X, et al. A fast and accurate segmentation method for ordered LiDAR point cloud of large-scale scenes[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(11): 1981-1985.

DOI: 10.1109/LGRS.2014.2316009

Yin H L, Yang X H, He C. Spherical coordinates based methods of ground extraction and objects segmentation using 3-D LiDAR sensor[J]. IEEE Intelligent Transportation Systems Magazine, 2016, 8(1): 61-68.

http://ieeexplore.ieee.org/document/7384616/

Hernandez J, Marcotegui B. Filtering of artifacts and pavement segmentation from mobile LiDAR data[C]//ISPRS Workshop Laserscanning 2009, Paris, France, 2009.

Wojke N, Häselich M. Moving vehicle detection and tracking in unstructured environments[C]//2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, 2012: 3082-3087.

樊建崟.在城市道路场景下基于稀疏三维点云的目标识别[D].哈尔滨: 哈尔滨工业大学, 2018: 12-13.

Fan J Y. Object recognition based on sparse 3D point cloud in urban environment[D]. Harbin: Harbin Institute of Technology, 2018: 12-13.

Yuan X, Zhao C X, Cai Y F, et al. Road-surface abstraction using ladar sensing[C]//2008 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 2008: 1097-1102.

Moosmann F, Pink O, Stiller C. Segmentation of 3D lidar data in non-flat urban environments using a local convexity criterion[C]//Proceedings of 2009 IEEE Intelligent Vehicles Symposium, Xi'an, China, 2009: 215-220.

张名芳, 付锐, 郭应时, 等.基于三维不规则点云的地面分割算法[J].吉林大学学报(工学版), 2017, 47(5): 1387-1394.

https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201705009.htm

Zhang M F, Fu R, Guo Y S, et al. Road segmentation method based on irregular three dimensional point cloud[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(5): 1387-1394.

https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201705009.htm

McElhinney C, Kumar P, Cahalane C, et al. Initial results from European road safety inspection (EURSI) mobile mapping project[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Newcastle upon Tyne, UK, 2010: 440-445.

Asvadi A, Premebida C, Peixoto P, et al. 3D lidar-based static and moving obstacle detection in driving environments: an approach based on voxels and multi-region ground planes[J]. Robotics and Autonomous Systems, 2016, 83: 299-311.

DOI: 10.1016/j.robot.2016.06.007

Chen T T, Dai B, Liu D X, et al. Sparse Gaussian process regression based ground segmentation for autonomous land vehicles[C]//The 27th Chinese Control and Decision Conference, Qingdao, China, 2015: 3993-3998.

董敏, 陈铁桩, 杨浩.基于Mesh的地面激光点云分离方法研究[J].计算机工程, 2019, 45(6): 32-36, 44.

https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201906006.htm

Dong M, Chen T Z, Yang H. Research on separation method of ground laser point cloud based on mesh[J]. Computer Engineering, 2019, 45(6): 32-36, 44.

https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201906006.htm

Rusu R B. Semantic 3D object maps for everyday manipulation in human living environments[J]. KI-Künstliche Intelligenz, 2010, 24(4): 345-348.

DOI: 10.1007/s13218-010-0059-6

苏本跃, 马金宇, 彭玉升, 等.基于K-means聚类的RGBD点云去噪和精简算法[J].系统仿真学报, 2016, 28(10): 2329-2334, 2341.

https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201610006.htm

Su B Y, Ma J Y, Peng Y S, et al. Algorithm for RGBD point cloud denoising and simplification based on K-means clustering[J]. Journal of System Simulation, 2016, 28(10): 2329-2334, 2341.

https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201610006.htm

Biosca J M, Lerma J L. Unsupervised robust planar segmentation of terrestrial laser scanner point clouds based on fuzzy clustering methods[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(1): 84-98.

http://www.sciencedirect.com/science/article/pii/s0924271607000809

Zhou W Q. An object-based approach for urban land cover classification: integrating LiDAR height and intensity data[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 928-931.

http://ieeexplore.ieee.org/document/6497495/

Tatoglu A, Pochiraju K. Point cloud segmentation with LiDAR reflection intensity behavior[C]//IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 2012: 786-790.

Franceschi M, Teza G, Preto N, et al. Discrimination between marls and limestones using intensity data from terrestrial laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(6): 522-528.

http://www.sciencedirect.com/science/article/pii/S0924271609000446

Pirotti F, Guarnieri A, Vettore A. Ground filtering and vegetation mapping using multi-return terrestrial laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 76: 56-63.

http://www.sciencedirect.com/science/article/pii/S0924271612001505

Boyko A, Funkhouser T. Extracting roads from dense point clouds in large scale urban environment[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6): S2-S12.

http://www.sciencedirect.com/science/article/pii/S0924271611001067

Song H, Choi W, Kim H. Robust vision-based relative-localization approach using an RGB-depth camera and LiDAR sensor fusion[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3725-3736.

http://ieeexplore.ieee.org/document/7390258

Lichti D D. Spectral filtering and classification of terrestrial laser scanner point clouds[J]. The Photogrammetric Record, 2005, 20(111): 218-240.

DOI: 10.1111/j.1477-9730.2005.00321.x

Thrun S. Learning occupancy grid maps with forward sensor models[J]. Autonomous Robots, 2003, 15(2): 111-127.

http://dl.acm.org/citation.cfm?id=940152.940193

Kammel S, Ziegler J, Pitzer B, et al. Team AnnieWAY's autonomous system for the 2007 DARPA urban challenge[J]. Journal of Field Robotics, 2008, 25(9): 615-639.

http://dl.acm.org/citation.cfm?id=1405648

Hoover A, Jean-Baptiste G, Jiang X, et al. An experimental comparison of range image segmentation algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(7): 673-689.

Kilian J, Haala N, Englich M. Capture and evaluation of airborne laser scanner data[C]//International Archives of Photogrammetry and Remote Sensing, Vienna, 1996, 31: 383-388.

Zhang K Q, Chen S C, Whitman D, et al. A progressive morphological filter for removing nonground measurements from airborne LIDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 872-882.

http://ieeexplore.ieee.org/document/1202973

黄作维, 刘峰, 胡光伟.基于多尺度虚拟格网的LiDAR点云数据滤波改进方法[J].光学学报, 2017, 37(8): 0828004.

https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201708042.htm

Huang Z W, Liu F, Hu G W. Improved method for LiDAR point cloud data filtering based on hierarchical pseudo-grid[J]. Acta Optica Sinica, 2017, 37(8): 0828004.

https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201708042.htm

Cohen J. A coefficient of agreement for nominal scales[J]. Educational and Psychological Measurement, 1960, 20(1): 37-46.

http://epm.sagepub.com/content/74/1/116/F1.expansion.html

周纪芗, 茆诗松.质量管理统计方法[M]. 2版.北京:中国统计出版社, 2008: 433-440.

Zhou J X, Mao S S. Statistical Methodsfor Quality Management[M]. 2nd ed. Beijing: China Statistics Press, 2008: 433-440.

Geiger A, Lenz P, Stiller C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237.

http://imaiai.oxfordjournals.org/external-ref?access_num=10.1177/0278364913491297&link_type=DOI

Liu S D, Hu L, Shi T X, et al. Comparison of filtering algorithms for rock point cloud data[C]//Proceedings of the 2016 5th International Conference on Advanced Materials and Computer Science, 2016: 101-107.

Li J, Mei X, Prokhorov D, et al. Deep neural network for structural prediction and lane detection in traffic scene[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3): 690-703.

http://europepmc.org/abstract/med/26890928

车载激光雷达点云数据地面滤波算法综述
  • 图  1
  • 图  2
  • 图  3
  • 图  4
  • 图  5
车载激光雷达点云数据地面滤波算法综述
  • 车载激光雷达类型 工作原理 优点 缺点 厂商/研究机构代表
    机械式旋转
    激光雷达
    通过部件的机械旋转完成激光扫描 大扫描视场和高扫描效率,可承受的激光功率高 机械结构复杂,设备难以小型化,行车环境下磨损严重,使用寿命短,价格高昂 Velodyne公司(美国)
    Quanergy公司(德国)
    上海禾赛光电
    深圳速腾聚创
    混合固态
    激光雷达
    通过MEMS振镜旋转完成激光扫描 实现了一定程度的小型化,响应速度较快 接收光路复杂,使用寿命短,扫描受限于振镜的偏转范围 Msotek公司(韩国)
    Innoviz公司(以色列)
    光学相控阵型
    激光雷达
    通过控制合成光束的指向完成激光扫描 无惯性器件,精确稳定,方向可任意控制 需要消除旁瓣的影响,难以实现水平360°扫描 Quanergy公司(美国)
    Blackmore公司(美国)
    闪光型
    激光雷达
    采用单脉冲直接向各个方向漫射,利用飞行时间成像 只要一次快闪便能照亮整个场景,避免运动畸变 探测精度随距离增加明显降低,视场角受限 亚德诺半导体公司
    (美国)
  • 滤波结果
    地面点 非地面点 总和
    标定数据 地面点 a b e=a+b
    非地面点 c d f=c+d
    总和 g=a+c h=b+d n=e+f
  • 算法名称 算法类型 算法时间复杂度T(n) 算法空间复杂度S(n) 参数/单位 参数取值范围/步进值 最优结果
    最优结果对应参数 Ⅰ类误差 Ⅱ类误差 总误差 Kappa系数
    向上生长滤波算法 基于空间划分 O(n/m) O(9(m-1)) 网格长度/m 0.1~0.5/0.1 0.2 0.0153 0.3854 0.1420 0.6553
    网格高度/m 0.1~0.5/0.1 0.2
    高度阈值/m -1.4~-0.4/0.1 -0.9
    相邻点连线滤波算法 基于扫描线 O(n) O(n) 坡度系数 0.003~0.0074 /0.0002 0.0032 0.0900 0.2113 0.1297 0.7035
    高度阈值/m -1.4~-0.4/0.1 -1.1
    坡度值区域增长滤波算法 基于局部特征 O(n) O(n) 坡度阈值/(°) 5~45/1.0 41 0.0675 0.1107 0.0824 0.7821
    高度阈值/m -1.4~-0.4/0.1 -1.1
  • 表  1

    车载激光雷达对比表

      1/3
  • 表  2

    交叉表

      2/3
  • 表  3

    滤波算法对比

      3/3