刘博, 于洋, 姜朔.激光雷达探测及三维成像研究进展[J].光电工程, 2019, 46(7): 190167. DOI: 10.12086/oee.2019.190167
Liu B, Yu Y, Jiang S. Review of advances in LiDAR detection and 3D imaging[J]. Opto-Electronic Engineering, 2019, 46(7): 190167. DOI: 10.12086/oee.2019.190167
|
Habermann D, Hata A, Wolf D, et al. 3D point clouds segmentation for autonomous ground vehicle[C]//2013 Ⅲ Brazilian Symposium on Computing Systems Engineering, Niteroi, Brazil, 2013: 143-148.
|
刘志青, 黄沈华, 马琪, 等.基于混合最小二乘与总体最小二乘的激光雷达滤波算法[J].测绘与空间地理信息, 2019, 42(2): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201902009.htm
Liu Z Q, Huang S H, Ma Q, et al. LiDAR filtering algorithm based on mixed least squares and total least squares[J]. Geomatics & Spatial Information Technology, 2019, 42(2): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201902009.htm
|
邱纯鑫.激光雷达与自动驾驶的产业化之路[J].人工智能, 2018(6): 37-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DKJS201806006.htm
Qiu C X. Lidar and the industrialization of automatic driving[J]. Artificial Intelligence, 2018(6): 37-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DKJS201806006.htm
|
陈晓冬, 张佳琛, 庞伟凇, 等.智能驾驶车载激光雷达关键技术与应用算法[J].光电工程, 2019, 46(7): 190182. DOI: 10.12086/oee.2019.190182
Chen X D, Zhang J C, Pang W S, et al. Key technology and application algorithm of intelligent driving vehicle LiDAR[J]. Opto-Electronic Engineering, 2019, 46(7): 190182. DOI: 10.12086/oee.2019.190182
|
陈敬业, 时尧成.固态激光雷达研究进展[J].光电工程, 2019, 46(7): 190218. DOI: 10.12086/oee.2019.190218
Chen J Y, Shi Y C. Research progress in solid-state LiDAR[J]. Opto-Electronic Engineering, 2019, 46(7): 190218. DOI: 10.12086/oee.2019.190218
|
Douillard B, Underwood J, Vlaskine V, et al. A pipeline for the segmentation and classification of 3D point clouds[C]//The 12th International Symposium on Experimental Robotics (ISER), Berlin, Heidelberg, 2014: 585-600.
|
Zhu Z, Liu J L. Graph-based ground segmentation of 3D LIDAR in rough area[C]//2014 IEEE International Conference on Technologies for Practical Robot Applications, Woburn, MA, USA, 2014.
|
Thrun S, Montemerlo M, Dahlkamp H, et al. Stanley: the robot that won the DARPA grand challenge[J]. Journal of Field Robotics, 2006, 23(9): 661-692. DOI: 10.1002/rob.20147
|
Douillard B, Underwood J, Melkumyan N, et al. Hybrid elevation maps: 3D surface models for segmentation[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, China, 2010: 1532-1538.
|
Kammel S, Pitzer B. Lidar-based lane marker detection and mapping[C]//2008 IEEE Intelligent Vehicles Symposium, Eindhoven, Netherlands, 2008: 1137-1142.
|
Guo C Z, Sato W, Han L, et al. Graph-based 2D road representation of 3D point clouds for intelligent vehicles[C]//2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 2011: 715-721.
|
Douillard B, Underwood J, Kuntz N, et al. On the segmentation of 3D LIDAR point clouds[C]//2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 2011: 2798-2805.
|
Zhao G Q, Yuan J S. Curb detection and tracking using 3D-LIDAR scanner[C]//2012 19th IEEE International Conference on Image Processing, Orlando, FL, USA, 2012: 437-440.
|
Chen T T, Dai B, Liu D X, et al. 3D LIDAR-based ground segmentation[C]//The First Asian Conference on Pattern Recognition, Beijing, China, 2011: 446-450.
|
Guan H Y, Yu Y T, Ji Z, et al. Deep learning-based tree classification using mobile LiDAR data[J]. Remote Sensing Letters, 2015, 6(11): 864-873. DOI: 10.1080/2150704X.2015.1088668
|
Guan H Y, Yu Y T, Li J, et al. Pole-like road object detection in mobile LiDAR data via supervoxel and bag-of-contextual-visual-words representation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(4): 520-524. DOI: 10.1109/LGRS.2016.2521684
|
Husain A, Vaishya R C. A time efficient algorithm for ground point filtering from mobile LiDAR data[C]//2016 International Conference on Control, Computing, Communication and Materials (ICCCCM), Allahbad, India, 2016.
|
Montemerlo M, Becker J, Bhat S, et al. Junior: the stanford entry in the urban challenge[J]. Journal of Field Robotics, 2008, 25(9): 569-597. DOI: 10.1002/rob.20258
|
Himmelsbach M, Hundelshausen F V, Wuensche H J. Fast segmentation of 3D point clouds for ground vehicles[C]//2010 IEEE Intelligent Vehicles Symposium, San Diego, CA, USA, 2010: 560-565.
|
Yang B S, Fang L N, Li J. Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 79: 80-93. DOI: 10.1016/j.isprsjprs.2013.01.016
|
Hu X Y, Li X K, Zhang Y J. Fast filtering of LiDAR point cloud in urban areas based on scan line segmentation and GPU acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 308-312. DOI: 10.1109/LGRS.2012.2205130
|
Hata A Y, Wolf D F. Feature detection for vehicle localization in urban environments using a multilayer LIDAR[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2): 420-429. http://ieeexplore.ieee.org/document/7279128/
|
Zhou Y, Wang D, Xie X, et al. A fast and accurate segmentation method for ordered LiDAR point cloud of large-scale scenes[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(11): 1981-1985. DOI: 10.1109/LGRS.2014.2316009
|
Yin H L, Yang X H, He C. Spherical coordinates based methods of ground extraction and objects segmentation using 3-D LiDAR sensor[J]. IEEE Intelligent Transportation Systems Magazine, 2016, 8(1): 61-68. http://ieeexplore.ieee.org/document/7384616/
|
Hernandez J, Marcotegui B. Filtering of artifacts and pavement segmentation from mobile LiDAR data[C]//ISPRS Workshop Laserscanning 2009, Paris, France, 2009.
|
Wojke N, Häselich M. Moving vehicle detection and tracking in unstructured environments[C]//2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, 2012: 3082-3087.
|
樊建崟.在城市道路场景下基于稀疏三维点云的目标识别[D].哈尔滨: 哈尔滨工业大学, 2018: 12-13.
Fan J Y. Object recognition based on sparse 3D point cloud in urban environment[D]. Harbin: Harbin Institute of Technology, 2018: 12-13.
|
Yuan X, Zhao C X, Cai Y F, et al. Road-surface abstraction using ladar sensing[C]//2008 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 2008: 1097-1102.
|
Moosmann F, Pink O, Stiller C. Segmentation of 3D lidar data in non-flat urban environments using a local convexity criterion[C]//Proceedings of 2009 IEEE Intelligent Vehicles Symposium, Xi'an, China, 2009: 215-220.
|
张名芳, 付锐, 郭应时, 等.基于三维不规则点云的地面分割算法[J].吉林大学学报(工学版), 2017, 47(5): 1387-1394. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201705009.htm
Zhang M F, Fu R, Guo Y S, et al. Road segmentation method based on irregular three dimensional point cloud[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(5): 1387-1394. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201705009.htm
|
McElhinney C, Kumar P, Cahalane C, et al. Initial results from European road safety inspection (EURSI) mobile mapping project[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Newcastle upon Tyne, UK, 2010: 440-445.
|
Asvadi A, Premebida C, Peixoto P, et al. 3D lidar-based static and moving obstacle detection in driving environments: an approach based on voxels and multi-region ground planes[J]. Robotics and Autonomous Systems, 2016, 83: 299-311. DOI: 10.1016/j.robot.2016.06.007
|
Chen T T, Dai B, Liu D X, et al. Sparse Gaussian process regression based ground segmentation for autonomous land vehicles[C]//The 27th Chinese Control and Decision Conference, Qingdao, China, 2015: 3993-3998.
|
董敏, 陈铁桩, 杨浩.基于Mesh的地面激光点云分离方法研究[J].计算机工程, 2019, 45(6): 32-36, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201906006.htm
Dong M, Chen T Z, Yang H. Research on separation method of ground laser point cloud based on mesh[J]. Computer Engineering, 2019, 45(6): 32-36, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201906006.htm
|
Rusu R B. Semantic 3D object maps for everyday manipulation in human living environments[J]. KI-Künstliche Intelligenz, 2010, 24(4): 345-348. DOI: 10.1007/s13218-010-0059-6
|
苏本跃, 马金宇, 彭玉升, 等.基于K-means聚类的RGBD点云去噪和精简算法[J].系统仿真学报, 2016, 28(10): 2329-2334, 2341. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201610006.htm
Su B Y, Ma J Y, Peng Y S, et al. Algorithm for RGBD point cloud denoising and simplification based on K-means clustering[J]. Journal of System Simulation, 2016, 28(10): 2329-2334, 2341. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201610006.htm
|
Biosca J M, Lerma J L. Unsupervised robust planar segmentation of terrestrial laser scanner point clouds based on fuzzy clustering methods[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(1): 84-98. http://www.sciencedirect.com/science/article/pii/s0924271607000809
|
Zhou W Q. An object-based approach for urban land cover classification: integrating LiDAR height and intensity data[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 928-931. http://ieeexplore.ieee.org/document/6497495/
|
Tatoglu A, Pochiraju K. Point cloud segmentation with LiDAR reflection intensity behavior[C]//IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 2012: 786-790.
|
Franceschi M, Teza G, Preto N, et al. Discrimination between marls and limestones using intensity data from terrestrial laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(6): 522-528. http://www.sciencedirect.com/science/article/pii/S0924271609000446
|
Pirotti F, Guarnieri A, Vettore A. Ground filtering and vegetation mapping using multi-return terrestrial laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 76: 56-63. http://www.sciencedirect.com/science/article/pii/S0924271612001505
|
Boyko A, Funkhouser T. Extracting roads from dense point clouds in large scale urban environment[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6): S2-S12. http://www.sciencedirect.com/science/article/pii/S0924271611001067
|
Song H, Choi W, Kim H. Robust vision-based relative-localization approach using an RGB-depth camera and LiDAR sensor fusion[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3725-3736. http://ieeexplore.ieee.org/document/7390258
|
Lichti D D. Spectral filtering and classification of terrestrial laser scanner point clouds[J]. The Photogrammetric Record, 2005, 20(111): 218-240. DOI: 10.1111/j.1477-9730.2005.00321.x
|
Thrun S. Learning occupancy grid maps with forward sensor models[J]. Autonomous Robots, 2003, 15(2): 111-127. http://dl.acm.org/citation.cfm?id=940152.940193
|
Kammel S, Ziegler J, Pitzer B, et al. Team AnnieWAY's autonomous system for the 2007 DARPA urban challenge[J]. Journal of Field Robotics, 2008, 25(9): 615-639. http://dl.acm.org/citation.cfm?id=1405648
|
Hoover A, Jean-Baptiste G, Jiang X, et al. An experimental comparison of range image segmentation algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(7): 673-689.
|
Kilian J, Haala N, Englich M. Capture and evaluation of airborne laser scanner data[C]//International Archives of Photogrammetry and Remote Sensing, Vienna, 1996, 31: 383-388.
|
Zhang K Q, Chen S C, Whitman D, et al. A progressive morphological filter for removing nonground measurements from airborne LIDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 872-882. http://ieeexplore.ieee.org/document/1202973
|
黄作维, 刘峰, 胡光伟.基于多尺度虚拟格网的LiDAR点云数据滤波改进方法[J].光学学报, 2017, 37(8): 0828004. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201708042.htm
Huang Z W, Liu F, Hu G W. Improved method for LiDAR point cloud data filtering based on hierarchical pseudo-grid[J]. Acta Optica Sinica, 2017, 37(8): 0828004. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201708042.htm
|
Cohen J. A coefficient of agreement for nominal scales[J]. Educational and Psychological Measurement, 1960, 20(1): 37-46. http://epm.sagepub.com/content/74/1/116/F1.expansion.html
|
周纪芗, 茆诗松.质量管理统计方法[M]. 2版.北京:中国统计出版社, 2008: 433-440.
Zhou J X, Mao S S. Statistical Methodsfor Quality Management[M]. 2nd ed. Beijing: China Statistics Press, 2008: 433-440.
|
Geiger A, Lenz P, Stiller C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237. http://imaiai.oxfordjournals.org/external-ref?access_num=10.1177/0278364913491297&link_type=DOI
|
Liu S D, Hu L, Shi T X, et al. Comparison of filtering algorithms for rock point cloud data[C]//Proceedings of the 2016 5th International Conference on Advanced Materials and Computer Science, 2016: 101-107.
|
Li J, Mei X, Prokhorov D, et al. Deep neural network for structural prediction and lane detection in traffic scene[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3): 690-703. http://europepmc.org/abstract/med/26890928
|