Combining reinforcement learning algorithm and genetic algorithm to solve the traveling salesman problem

Author:

Ruan Yaqi1ORCID,Cai Weihong1ORCID,Wang Jiaying1

Affiliation:

1. Department of Computer Science Shantou University Shantou Guangdong China

Abstract

AbstractWith the growing recognition of the unique advantages of reinforcement learning and genetic algorithms in addressing combinatorial optimization problems, this study aims to integrate these two methods to collectively tackle the classic combinatorial optimization challenge of the travelling salesman problem (TSP). The TSP stands as a quintessential combinatorial optimization challenge, tasked with determining the shortest path among designated cities. This paper introduces an innovative approach by amalgamating reinforcement learning's path selection prowess with genetic algorithms' global search strategy, aiming to uncover superior solutions in TSP. Specifically, the experiment employs a dual Q‐learning algorithm within reinforcement learning to identify multiple optimal paths, serving as progenitors for the genetic algorithm to further enhance performance. The paper meticulously outlines the problem modelling process, elucidating TSP instance definitions, descriptions, and precise objective function definitions. Experimental findings underscore the substantial enhancements achievable in TSP optimization through this comprehensive approach, offering a fresh perspective and methodology for tackling combinatorial optimization challenges.

Funder

Science and Technology Planning Project of Guangdong Province

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3