Analysis of safe electricity consumption on load side based on attack and defence game model

Author:

Wang Xiaodong1,Gong Feixiang2ORCID,Chen Songsong2,Zheng Bowen2,Zhang Ping1,Zhao Liye2,Jiang Linru2,Zhang Dongdong3,Du Pengcheng3ORCID

Affiliation:

1. State Grid Henan Electrical Power Company Zhengzhou China

2. China Electric Power Research Institute Beijing China

3. School of Electrical Engineering Guangxi University Nanning China

Abstract

AbstractWith the improvement of digitalization and intelligence in the power system, the safe operation of the power system is facing enormous challenges. The safe use of electricity on the load side is the key to achieving safe and reliable power system operation. The detection party needs amounts of human and material resources when the power network is attacked. In response to the current difficulties of low detection ability and high detection costs, this paper proposes an attack and defence game model that considers the differences between different nodes, ensuring the safety and economy of electricity consumption while reducing energy waste. At first, the structure of smart meters and the attack characteristics of intruders are summarized, and a basic attack and defence game model is constructed. The Nash equilibrium is then solved, and the optimal strategy for the game between the defender and the intruder is given to balance the relation between detection performance and energy consumption. In response to the differences generated by each node, strategies for attackers to launch attacks on different nodes and the setting of optimal thresholds for other nodes in the defence system are explored. Finally, case studies verify that the proposed model could reduce the cost of intruder detection while ensuring a specific detection rate.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3