Investigating the effects of uniaxial pressure on the preparation of MgTiO3–CaTiO3 ceramic capacitors for MRI systems

Author:

Jebri Zaineb1ORCID,Taleb Ali Mahfoudh2ORCID,Bord Majek Isabelle1ORCID

Affiliation:

1. IMS Laboratory CNRS UMR 5218, U. Bordeaux Talence France

2. I2M Laboratory CNRS UMR 5218, U. Bordeaux Talence France

Abstract

AbstractToday's healthcare system relies on magnetic resonance imaging (MRI) for early diagnosis and treatment planning. For open MRI systems to achieve resolutions of about a hundred microns, a high voltage is required, as well as a specialized power supply. Negative–positive–zero (NP0) ceramic is selected for the fabrication of adjustable capacitors. Specifically, it stands for which is a classification based on the temperature coefficient of capacitance (TCC) of the ceramic material used in the capacitor. NP0 capacitors have a TCC of 0 ±30 ppm/°C, which means that their capacitance value does not change significantly with temperature and frequency. They are known for their stability and low losses, making them ideal for applications that require high accuracy and reliability, such as timing circuits for radio frequency (RF) applications. Here, MgTiO3–CaTiO3 ceramic is used to make an adjustable capacitor with desired properties for MRI systems. To enhance the dielectric properties of MgTiO3 ceramics, CaTiO3 was added in varying concentrations. After pressing and sintering, the resulting samples were tested using a vector network analyzer in the frequency range of 10–130 MHz. The adjustable capacitor fabricated using high co‐fired NP0 ceramic may have been used for MRI applications such as tuning circuits and matching networks, where precise capacitance values and low loss are critical. MRI systems with resonance frequencies of 128 MHz require trimmers with ceramic cores (VBreakdown = 3 kV @ 128 MHz, Cmin = 3 pF, CMax = 30 pF, and Cvariation step = 1.5 pF).

Publisher

Institution of Engineering and Technology (IET)

Subject

General Engineering,Energy Engineering and Power Technology,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3