Hybrid energy storage for the optimized configuration of integrated energy system considering battery‐life attenuation

Author:

Zeng Xianqiang1,Xiao Peng1,Zhou Yun2ORCID,Li Hengjie12

Affiliation:

1. School of Electrical Engineering and Information Engineering Lanzhou University of Technology Lanzhou China

2. Key Laboratory of Control of Power Transmission and Conversion (Ministry of Education) Shanghai Jiao Tong University Shanghai China

Abstract

AbstractTo enhance the utilization of renewable energy and the economic efficiency of energy system's planning and operation, this study proposes a hybrid optimization configuration method for battery/pumped hydro energy storage considering battery‐lifespan attenuation in the regionally integrated energy system (RIES). Moreover, a two‐layer optimization model was established for integrated energy system planning and operation based on the combination of the Salp Swarm algorithm and mixed‐integer linear programming. Considering wind and solar energies and multiple loads, such as electricity, cooling, and heating, the first step in this paper involved the construction of a model for the RIES incorporating hybrid energy storage and various energy‐conversion devices. Then, given a synergy among different energy sources in the system, the long‐term impact of battery‐lifespan attenuation is introduced by including battery‐replacement costs. Based on the optimization results obtained from daily operations, a hybrid energy storage‐based optimization configuration model is established to minimize the annual operational and energy‐storage investment costs. The results show that, compared to the systems with a single pumped hydro storage or battery energy storage, the system with the hybrid energy storage reduces the total system cost by 0.33% and 0.88%, respectively. Additionally, the validity of the proposed method in enhancing the economic efficiency of system planning and operation is confirmed. Furthermore, a comparative analysis is conducted of the impact of battery‐lifespan degradation on the system's economic efficiency. The results show that during the system's operation phase, the total system cost is reduced by 9.97% considering battery‐lifespan degradation than that without considering the degradation.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

General Engineering,Energy Engineering and Power Technology,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3